期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
植被类型对温度植被干旱指数(TVDI)的影响研究——以黑河绿洲区为例 被引量:17
1
作者 陈艳华 张万昌 《遥感技术与应用》 CSCD 2007年第6期700-706,共7页
温度植被干旱指数(TVDI)是进行干旱研究的有效指标,是反演土壤湿度的重要方法。植被覆盖类型是影响TVDI大小的重要因素。利用修正的土壤调整植被指数MSAVI替换NDVI,以便最小化土壤背景影响和提高对密植被的光谱敏感性,并在此基础上,比... 温度植被干旱指数(TVDI)是进行干旱研究的有效指标,是反演土壤湿度的重要方法。植被覆盖类型是影响TVDI大小的重要因素。利用修正的土壤调整植被指数MSAVI替换NDVI,以便最小化土壤背景影响和提高对密植被的光谱敏感性,并在此基础上,比较基于植被分类计算的TVDI与基于传统方法计算的TVDI的大小,来研究植被类型对TVDI提取结果的影响。对比分析表明,阔叶林、灌丛和密草地的平均值与传统方法计算的差别较大,变化分别是+7.2%、-5.5%和-6.6%,产生平均值偏移主要是由于植被类型的冠层结构和光学属性的差异带来的LST-MSAVI空间特征干湿边的变化引起的。因此,在应用TVDI指数进行大范围干旱化研究和土壤湿度反演时,不同植被类型不能一起作LST-MSAVI空间特征来计算TVDI指数,需要考虑植被类型等影响因素,达到提高土壤湿度反演精度的目的。 展开更多
关键词 植被干旱植被指数 TVDI 植被类型 LST—MSAVI特征空间
下载PDF
Effects of RapidEye Imagery's Red-edge Band and Vegetation Indices on Land Cover Classification in an Arid Region 被引量:9
2
作者 LI Xianju CHEN Gang +3 位作者 LIU Jingyi CHEN Weitao CHENG Xinwen LIAO Yiwei 《Chinese Geographical Science》 SCIE CSCD 2017年第5期827-835,共9页
Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was eff... Land cover classification(LCC) in arid regions is of great significance to the assessment, prediction, and management of land desertification. Some studies have shown that the red-edge band of RapidE ye images was effective for vegetation identification and could improve LCC accuracy. However, there has been no investigation of the effects of RapidE ye images' red-edge band and vegetation indices on LCC in arid regions where there are spectrally similar land covers mixed with very high or low vegetation coverage information and bare land. This study focused on a typical inland arid desert region located in Dunhuang Basin of northwestern China. First, five feature sets including or excluding the red-edge band and vegetation indices were constructed. Then, a land cover classification system involving plant communities was developed. Finally, random forest algorithm-based models with different feature sets were utilized for LCC. The conclusions drawn were as follows: 1) the red-edge band showed slight contribution to LCC accuracy; 2) vegetation indices had a significant positive effect on LCC; 3) simultaneous addition of the red-edge band and vegetation indices achieved a significant overall accuracy improvement(3.46% from 86.67%). In general, vegetation indices had larger effect than the red-edge band, and simultaneous addition of them significantly increased the accuracy of LCC in arid regions. 展开更多
关键词 arid region land cover classification RapidEye red-edge band vegetation indices random forest Dunhuang Basin
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部