作为“国际地圈-生物圈计划(IGBP)”的15条陆地样带之一,中国东北样带(Northeast China Transect,NECT)在IGBP核心项目“全球变化与陆地生态系统(GCTE)”中已经建立10年之久。该样带位于中纬度温带半干旱地区,跨越北纬42~46°...作为“国际地圈-生物圈计划(IGBP)”的15条陆地样带之一,中国东北样带(Northeast China Transect,NECT)在IGBP核心项目“全球变化与陆地生态系统(GCTE)”中已经建立10年之久。该样带位于中纬度温带半干旱地区,跨越北纬42~46°,东经110~132°,其主要全球变化驱动因素为降水,次要驱动因素为土地利用强度。在过去的1O年里,中国东北样带的研究进展表现在以下几个方面:生态数据库发展、气候及其变异性、植物对环境的生态生理响应、植被和景观变化、生物多样性格局及其变化、植物功能型和植物性状及气候梯度分析、生产力和碳动态、花粉-植被相互关系、痕量气体放散、土地利用和土地覆盖变化以及生物地理和生物地球化学模拟。为达到更高水平的集成研究,中国东北样带今后需要:统一框架下的坚实的基础数据集、进一步的野外实验和观测、从斑块、景观到生物群区尺度的植被结构、过程和功能的集成模拟、样带内和与其他IGBP样带研究结果的相互比较、多学科交叉研究、国内和国际协作以及完整的科学计划和实施对策。展开更多
Better understanding of the role of vegetation and soil on hydraulic resistance of overland flow requires quantitative partition of their interaction. In this paper, a total of 144 hydraulic flume experiments were car...Better understanding of the role of vegetation and soil on hydraulic resistance of overland flow requires quantitative partition of their interaction. In this paper, a total of 144 hydraulic flume experiments were carried out to investigate the hydraulic characteristics of overland flow. Results show that hydraulic resistance is negatively correlated with Reynolds number on non-simulated vegetated slopes, while positively on vegetated slopes. The law of composite resistance agrees with the dominant resistance, depending on simulated vegetation stem,surface roughness, and discharge. Surface roughness has greater influence on overland flow resistance than vegetation stem when unit discharge is lower than the low-limited critical discharge, while vegetation has a more obvious influence when unit discharge is higher than the upper-limited critical discharge. Combined effects of simulated vegetation and surface roughness are unequal to the sum of the individual effects through t-test, implying the limitation of using linear superposition principle in calculating overland flow resistances under combined effect of roughness elements.展开更多
Constructing the 3D virtual scene of a coal mine is the objective requirement for modernizing and processing information on coal mining production. It is also the key technology to establish a "digital mine". By exp...Constructing the 3D virtual scene of a coal mine is the objective requirement for modernizing and processing information on coal mining production. It is also the key technology to establish a "digital mine". By exploring current worldwide research, software and hardware tools and application demands, combined with the case study site (the Dazhuang mine of Pingdingshan coal group), an approach for 3D geo-visualization of a mine surface plant and mine roadway is deeply discussed. In this study, the rapid modeling method for a large range virtual scene based on Arc/Info and SiteBuilder3D is studied, and automatic generation of a 3D scene from a 2D scene is realized. Such an automatic method which can convert mine roadway systems from 2D to 3D is realized for the Dazhuang mine. Some relevant application questions are studied, including attribute query, coordinate query, distance measure, collision detection and the dynamic interaction between 2D and 3D virtual scenes in the virtual scene of a mine surface plant and mine roadway. A prototype system is designed and developed.展开更多
This study investigates the influence of interannual vegetation variability. Two sets of offline and online simulations were performed using the Community Earth System Model. The interannual Global LAnd Surface Satell...This study investigates the influence of interannual vegetation variability. Two sets of offline and online simulations were performed using the Community Earth System Model. The interannual Global LAnd Surface Satellite(GLASS) leaf area index(LAI) dataset from 1985 to 2000 and its associated climatological LAI were used to replace the default climatological LAI data in version 4 of the Community Land Model(CLM4). The results showed that on a global scale, canopy transpiration and evaporation, as well as total evapotranspiration in offline simulations were significantly positively correlated with LAI, whereas ground evaporation and ground temperature showed significant negative correlation with LAI. However, the correlations in online simulations were reduced markedly because of interactive feedbacks between albedo, changed climatic factors and atmospheric variability. In the offline simulations, the fluctuations of differences in interannual variability of evapotranspiration and ground temperature focused on vegetation growing regions and the magnitudes were smaller. Those in online simulations spread over more regions and the magnitudes were larger. These results highlight the influence of interannual vegetation variability, particularly in online simulations, an effect that deserves consideration and attention when investigating the uncertainty of climate change.展开更多
Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment impro...Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.展开更多
文摘作为“国际地圈-生物圈计划(IGBP)”的15条陆地样带之一,中国东北样带(Northeast China Transect,NECT)在IGBP核心项目“全球变化与陆地生态系统(GCTE)”中已经建立10年之久。该样带位于中纬度温带半干旱地区,跨越北纬42~46°,东经110~132°,其主要全球变化驱动因素为降水,次要驱动因素为土地利用强度。在过去的1O年里,中国东北样带的研究进展表现在以下几个方面:生态数据库发展、气候及其变异性、植物对环境的生态生理响应、植被和景观变化、生物多样性格局及其变化、植物功能型和植物性状及气候梯度分析、生产力和碳动态、花粉-植被相互关系、痕量气体放散、土地利用和土地覆盖变化以及生物地理和生物地球化学模拟。为达到更高水平的集成研究,中国东北样带今后需要:统一框架下的坚实的基础数据集、进一步的野外实验和观测、从斑块、景观到生物群区尺度的植被结构、过程和功能的集成模拟、样带内和与其他IGBP样带研究结果的相互比较、多学科交叉研究、国内和国际协作以及完整的科学计划和实施对策。
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. 2016ZCQ06)supported by the National Natural Science Foundation of China (Grant No. 51309006)
文摘Better understanding of the role of vegetation and soil on hydraulic resistance of overland flow requires quantitative partition of their interaction. In this paper, a total of 144 hydraulic flume experiments were carried out to investigate the hydraulic characteristics of overland flow. Results show that hydraulic resistance is negatively correlated with Reynolds number on non-simulated vegetated slopes, while positively on vegetated slopes. The law of composite resistance agrees with the dominant resistance, depending on simulated vegetation stem,surface roughness, and discharge. Surface roughness has greater influence on overland flow resistance than vegetation stem when unit discharge is lower than the low-limited critical discharge, while vegetation has a more obvious influence when unit discharge is higher than the upper-limited critical discharge. Combined effects of simulated vegetation and surface roughness are unequal to the sum of the individual effects through t-test, implying the limitation of using linear superposition principle in calculating overland flow resistances under combined effect of roughness elements.
文摘Constructing the 3D virtual scene of a coal mine is the objective requirement for modernizing and processing information on coal mining production. It is also the key technology to establish a "digital mine". By exploring current worldwide research, software and hardware tools and application demands, combined with the case study site (the Dazhuang mine of Pingdingshan coal group), an approach for 3D geo-visualization of a mine surface plant and mine roadway is deeply discussed. In this study, the rapid modeling method for a large range virtual scene based on Arc/Info and SiteBuilder3D is studied, and automatic generation of a 3D scene from a 2D scene is realized. Such an automatic method which can convert mine roadway systems from 2D to 3D is realized for the Dazhuang mine. Some relevant application questions are studied, including attribute query, coordinate query, distance measure, collision detection and the dynamic interaction between 2D and 3D virtual scenes in the virtual scene of a mine surface plant and mine roadway. A prototype system is designed and developed.
基金supported by Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05110103)the National High Technology Research and Development Program of China (863 Program, Grant No. 2009AA122100)
文摘This study investigates the influence of interannual vegetation variability. Two sets of offline and online simulations were performed using the Community Earth System Model. The interannual Global LAnd Surface Satellite(GLASS) leaf area index(LAI) dataset from 1985 to 2000 and its associated climatological LAI were used to replace the default climatological LAI data in version 4 of the Community Land Model(CLM4). The results showed that on a global scale, canopy transpiration and evaporation, as well as total evapotranspiration in offline simulations were significantly positively correlated with LAI, whereas ground evaporation and ground temperature showed significant negative correlation with LAI. However, the correlations in online simulations were reduced markedly because of interactive feedbacks between albedo, changed climatic factors and atmospheric variability. In the offline simulations, the fluctuations of differences in interannual variability of evapotranspiration and ground temperature focused on vegetation growing regions and the magnitudes were smaller. Those in online simulations spread over more regions and the magnitudes were larger. These results highlight the influence of interannual vegetation variability, particularly in online simulations, an effect that deserves consideration and attention when investigating the uncertainty of climate change.
基金Project(50878111) supported by the National Natural Science Foundation of China
文摘Vegetation plays a key role in improving wind environment of residential districts,and is helpful for creating a comfortable and beautiful living environment.The optimal design of vegetation for wind environment improvement in winter was investigated by carrying out field experiments in Heqingyuan residential area in Beijing,and after that,numerical simulation with SPOTE(simulation platform for outdoor thermal environment) experiments for outdoor thermal environment of vegetation was adopted for comparison.The conclusions were summarized as follows:1) By comparing the experimental data with simulation results,it could be concluded that the wind field simulated was consistent with the actual wind field,and the flow distribution impacted by vegetation could be accurately reflected;2) The wind velocity with vegetation was lower than that without vegetation,and the wind velocity was reduced by 46%;3) By adjusting arrangement and types of vegetation in the regions with excessively large wind velocity,the pedestrian-level wind velocity could be obviously improved through the simulation and comparison.