Under the condition of different precipitation intensities, different gradients, different land-use types and different vegetation coverage, the soil erosion and transference of element (or pollutant) are studied by s...Under the condition of different precipitation intensities, different gradients, different land-use types and different vegetation coverage, the soil erosion and transference of element (or pollutant) are studied by simulating and analyzing the surface run-off of experimental plots in the catchment area of Songhua Lake, with an area of about 43 370.8km2. And the influencing factors that produce the spatial difference are analyzed and assessed. It is put forward that the irrational land utilization is the reason of soil erosion and pollutant run-off. The gradient of farmland, the growing season of vegetation and the vegetation coverage are chiefly restricting factors that lead to the soil erosion and pollutant run-off. This study can provide the fundamental data for comprehensive planning and harnessing of the non-point source pollution in the valley.展开更多
No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become th...No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become the inevitable trend for slope vegetation in pursuit of protecting ecological condition, decreasing soil erosion, maintaining ecological balance and beautifying environment of slope. The concept of original ecological tridimensional slope vegetation is proposed in this paper, and the original ecological tridimensional slope vegetation is studied through theoretical analysis and experiments. Specifically, the mechanical effect of slope vegetation in reinforcing the cohesion and shear strength of soil mass is firstly discussed, and then experiments are performed to study the water interception and containing function of slope under various vegetation conditions. Moreover, the relation between soil moisture and cohesion, the relation between root distribution density and cohesion, and the relation between root distribution density and soil shear strength are also studied based on experiments.Finally, based on field observation, the soil erosion states of slope under various vegetation conditions are comparatively studied. It is found that the original ecological tridimensional slope, which combines grass,shrub and tree, can generate comprehensive slope protection effects, and hence strengthen the slope protection ability and bring multiple slope protection benefits. Thereby, the theoretical foundation for developing original ecological tridimensional slope vegetation is established.展开更多
Reconstructing long-term vegetation buffers along streams in agricultural landscapes has become a common environmental restoration strategy for improving water quality and wildlife habitat connectivity.This article de...Reconstructing long-term vegetation buffers along streams in agricultural landscapes has become a common environmental restoration strategy for improving water quality and wildlife habitat connectivity.This article developed a linear weighted model to rank the priority of agricultural sub-basins for the establishment of vegetative buffers.The method was applied to an agricultural watershed of 146 km2 in Ontario,Canada.The watershed was divided into 11 sub-basins as basic decision units.In each subbasin,four stream buffer schemes with widths of 5,10,15 and 20m were generated.For each buffer,three benefit-cost attributes of reconstructing vegetation cover were estimated,which include acreage per dollar,sediment abatement per dollar and habitat benefit per dollar.These attributes were first normalized using a linear normalization approach to eliminate the effects across different units.The normalized attributes were then integrated using a simple additive weighting method to rank the 11 sub-basins for prioritizing spatial restoration action.A sensitivity analysis was also conducted to observe the impact of a change in attribute weights on the management decisions.The results suggest that vegetation buffers reconstructed for achieving the water quality goal are not effective in improving habitat connectivity and vice versa.展开更多
Fourteen countries share about 22000 km land border with China, but not much is known about the variation in vegetation in such a large diverse area. By employing the remotely-sensed vegetation indices the vegetation ...Fourteen countries share about 22000 km land border with China, but not much is known about the variation in vegetation in such a large diverse area. By employing the remotely-sensed vegetation indices the vegetation greenness along the border was discussed. Our results show that since the early 21 st century, similar trends in vegetation greenness have occurred along most of China's border, but differences occurred on either side of the border. Along the border with North Korea and South Asian nations, greater increasing trend in vegetation greenness occurred inside China's border, suggesting that China's vegetation protection programs have been successful. Spatial and temporal variations in vegetation greenness trends were observed along China's border with Russia, Mongolia, and Central Asian nations. Vegetation variation was lower inside China, along the Russian border, and China's eastern border with Mongolia. Along most borders with Central Asian nations, rates of vegetation change inside China's border during the growing season were higher than the rates outside the border. The results suggest that social customs, resource exploitation patterns, and national environmental conservation programs may profoundly affect vegetation greenness.展开更多
文摘Under the condition of different precipitation intensities, different gradients, different land-use types and different vegetation coverage, the soil erosion and transference of element (or pollutant) are studied by simulating and analyzing the surface run-off of experimental plots in the catchment area of Songhua Lake, with an area of about 43 370.8km2. And the influencing factors that produce the spatial difference are analyzed and assessed. It is put forward that the irrational land utilization is the reason of soil erosion and pollutant run-off. The gradient of farmland, the growing season of vegetation and the vegetation coverage are chiefly restricting factors that lead to the soil erosion and pollutant run-off. This study can provide the fundamental data for comprehensive planning and harnessing of the non-point source pollution in the valley.
基金supported by National Natural Science Foundation of China (Grant No. 41372307)the Yunan Provincial Communication Research Fund (Grant No. 2010 (A) 06-b)the Young Scholar Foundation of Central South University of Forestry and Technology (Grant No. 2008051B)
文摘No matter from the perspective of slope protection, landscape effect and construction cost, or from the perspective of ecological benefit, the development of original ecological tridimensional vegetation has become the inevitable trend for slope vegetation in pursuit of protecting ecological condition, decreasing soil erosion, maintaining ecological balance and beautifying environment of slope. The concept of original ecological tridimensional slope vegetation is proposed in this paper, and the original ecological tridimensional slope vegetation is studied through theoretical analysis and experiments. Specifically, the mechanical effect of slope vegetation in reinforcing the cohesion and shear strength of soil mass is firstly discussed, and then experiments are performed to study the water interception and containing function of slope under various vegetation conditions. Moreover, the relation between soil moisture and cohesion, the relation between root distribution density and cohesion, and the relation between root distribution density and soil shear strength are also studied based on experiments.Finally, based on field observation, the soil erosion states of slope under various vegetation conditions are comparatively studied. It is found that the original ecological tridimensional slope, which combines grass,shrub and tree, can generate comprehensive slope protection effects, and hence strengthen the slope protection ability and bring multiple slope protection benefits. Thereby, the theoretical foundation for developing original ecological tridimensional slope vegetation is established.
基金supported by "SUST Spring Bud" Project (Grant no.2008AZZ110)National Key Technology R&D Program of China project (Grant no.2006BAJ15B02)
文摘Reconstructing long-term vegetation buffers along streams in agricultural landscapes has become a common environmental restoration strategy for improving water quality and wildlife habitat connectivity.This article developed a linear weighted model to rank the priority of agricultural sub-basins for the establishment of vegetative buffers.The method was applied to an agricultural watershed of 146 km2 in Ontario,Canada.The watershed was divided into 11 sub-basins as basic decision units.In each subbasin,four stream buffer schemes with widths of 5,10,15 and 20m were generated.For each buffer,three benefit-cost attributes of reconstructing vegetation cover were estimated,which include acreage per dollar,sediment abatement per dollar and habitat benefit per dollar.These attributes were first normalized using a linear normalization approach to eliminate the effects across different units.The normalized attributes were then integrated using a simple additive weighting method to rank the 11 sub-basins for prioritizing spatial restoration action.A sensitivity analysis was also conducted to observe the impact of a change in attribute weights on the management decisions.The results suggest that vegetation buffers reconstructed for achieving the water quality goal are not effective in improving habitat connectivity and vice versa.
基金supported by the National Key Research and Development Program of China(Grant No.2016YFA0601900Key Frontier Program of Chinese Academy of Sciences(Grant No.QYZDJ-SSW-DQC043)the National Science Fund for Distinguished Young Scholars of China(Grant No.41225001).
文摘Fourteen countries share about 22000 km land border with China, but not much is known about the variation in vegetation in such a large diverse area. By employing the remotely-sensed vegetation indices the vegetation greenness along the border was discussed. Our results show that since the early 21 st century, similar trends in vegetation greenness have occurred along most of China's border, but differences occurred on either side of the border. Along the border with North Korea and South Asian nations, greater increasing trend in vegetation greenness occurred inside China's border, suggesting that China's vegetation protection programs have been successful. Spatial and temporal variations in vegetation greenness trends were observed along China's border with Russia, Mongolia, and Central Asian nations. Vegetation variation was lower inside China, along the Russian border, and China's eastern border with Mongolia. Along most borders with Central Asian nations, rates of vegetation change inside China's border during the growing season were higher than the rates outside the border. The results suggest that social customs, resource exploitation patterns, and national environmental conservation programs may profoundly affect vegetation greenness.