期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Landsat 8-OLI的荒漠化地区植被覆盖度反演模型研究 被引量:16
1
作者 马中刚 孙华 +3 位作者 王广兴 林辉 佘宇晨 邹琪 《中南林业科技大学学报》 CAS CSCD 北大核心 2016年第9期12-18,141,共7页
基于Landsat 8-OLI影像数据,利用植被指数逐步回归分析和线性混合像元分解的方法,结合134个野外样地调查数据,将线性混合像元分解结果(植被丰度)导入影像植被指数逐步回归模型,建立康保县荒漠化地区植被覆盖度反演混合模型,并进行精度... 基于Landsat 8-OLI影像数据,利用植被指数逐步回归分析和线性混合像元分解的方法,结合134个野外样地调查数据,将线性混合像元分解结果(植被丰度)导入影像植被指数逐步回归模型,建立康保县荒漠化地区植被覆盖度反演混合模型,并进行精度检验。结果表明:(1)在所选16种影像植被指数中,采用单一植被指数进行荒漠化地区植被覆盖度反演建模,与植被覆盖度拟合优度最高的是归一化植被指数(NDVI)和土壤调节植被指数(SAVI),利用植被指数逐步回归分析建模,筛选出的3种最佳影像植被指数是土壤调节植被指数(SAVI0.5),比值植被指数(SR_(N-R))和增强型植被指数(EVI);(2)通过线性混合像元分解建立的植被覆盖度反演模型,分解所得植被丰度与植被覆盖度的决定系数为0.673,模型精度低于利用植被指数逐步回归分析法反演的模型精度,但高于单一植被指数与植被覆盖度反演模型的精度;(3)精度检验显示植被指数逐步回归分析法反演的植被覆盖度模型的决定系数(R^2)和精度分别为0.719和86.70%,而混合像元分解和植被指数逐步回归分析综合所建的混合模型的决定系数(R^2)和精度分别为0.807和92.37%,表明植被指数逐步回归分析与混合像元分解相结合能较好地提高荒漠化地区植被覆盖度反演精度。 展开更多
关键词 荒漠化 植被覆盖度反演 影像植被指数 逐步回归分析 线性混合像元分解
下载PDF
基于综合分段优势的植被覆盖度模型比较
2
作者 边慧芹 王雪梅 《草业科学》 CAS CSCD 北大核心 2021年第3期432-442,共11页
基于Landsat 8 OLI遥感影像选取9种植被指数,与野外实测植被覆盖度进行相关性分析,采用分段方式选择敏感植被指数,构建回归模型及FCD模型(forest canopy density mapping model,FCD)对渭干河–库车河三角洲绿洲植被覆盖度进行反演。结... 基于Landsat 8 OLI遥感影像选取9种植被指数,与野外实测植被覆盖度进行相关性分析,采用分段方式选择敏感植被指数,构建回归模型及FCD模型(forest canopy density mapping model,FCD)对渭干河–库车河三角洲绿洲植被覆盖度进行反演。结果表明:1)根据实测数据计算不同植被指数在不同植被覆盖度范围内的变化比例,从而确定0.3和0.7作为研究区植被覆盖度的分段点;2)分段回归模型与综合分段优势的FCD模型建模精度均约为79%,但综合分段优势的FCD模型建模集R2较高,RMSE较小,其验证结果优于分段回归模型,验证集R2为0.832,RMSE为0.154,精度为82.018%。综合分段优势的FCD模型更适合用于研究区总体植被覆盖度反演,可为干旱区植被覆盖度定量监测与生态环境评价提供依据。 展开更多
关键词 植被指数 分段回归 FCD模型 植被覆盖度反演 渭干河–库车河三角洲绿洲
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部