Dispersed soil clays have a negative impact on soil structure and contribute to soil erosion and contaminant movement. In this study, two typical soils from the south of China were chosen for investigating roles of pH...Dispersed soil clays have a negative impact on soil structure and contribute to soil erosion and contaminant movement. In this study, two typical soils from the south of China were chosen for investigating roles of pH and humic acid (HA) on dispersion of soil clays. Critical flocculation concentration (CFC) of the soil clay suspension was determined by using light transmission at a wavelength of 600 um. The results indicated that effects of pH and HA on dispersion of the soil clays were closely related to the type of the major minerals making up the soil and to the valence of the exchangeable canons as well. At four rates of pH(4, 6, 8 and 10), the CFC for the Na-yellow-brown soil treated with H2O2 was increased from 0.32 to 0.56, 6.0 to 14.0,10.0 to 24.6 and 26.0 to 52.0 mmol L-1 NaCl, respectively when Na-HA was added at the rate of from 0 to 40 mg L-1. With the same Na-HA addition and three pH (6, 8 and 10) treatments, the CFC for the Na-red soil was increased from 0.5 to 20.0, 1.0 to 40.0 and 6.0 to 141.0 mmol L-1 NaCl, respectively. Obviously,pH and HA has greater effects on clay dispersion of the red soil(dominated by 1:1 minerals and oxides)than on that of the yellow-brown soil(dominated by 2: 1 minerals). However, at three rates of pH (6, 8 and 10) and with the addition of Ca-HA from 0 to 40 mg L-1, the CFC of the Ca-yellow-brown soil and Ca-red soil treated with H2O2 was increased from 0.55 to 0.81, 0.75 to 1.28, 0.55 to 1.45 and 0.038 to 0.266, 0.25 to 0.62, 0.7 to 1.6 mmol CaCl2 L-1, respectively. So, Na-soil clays are more sensitive to pH and HA than Ca-soil clays.展开更多
The investigation was conducted to determine physiological criteria of early selection for salt tolerant leguminous plants. Plants were subjected to 5 levels of salt stress at the roots (0, 50, 100,150 and 200 mM NaC...The investigation was conducted to determine physiological criteria of early selection for salt tolerant leguminous plants. Plants were subjected to 5 levels of salt stress at the roots (0, 50, 100,150 and 200 mM NaCI). Results showed that sodium chloride had an underrating effect on growth of stems and seed germination of the species studied. The germination rates of seeds of Glycine max and Phaseolus vulgaris (sensitive glyeophytes) were affected from 3 g/L of NaCl, with critical thresholds at 9 and 12 g/L respectively. In contrast, critical thresholds with Mucunapoggei (facultative halophyte), Vigna unguiculata (moderately tolerant glycophyte) and P. adenanthus (natural halophyte) was found to be above 21 g/L. The reduction of stems growth rate were not significant in P. adenanthus whereas in M. poggei and V. unguiculata this inhibition was observed just when nutritive solutions were enriched with 200 mM. The lipid contents were reduced in all the species under salt stress, whereas proteins and proline contents in the leaves were substantially increased in tolerant species (M. poggei, P. adenanthus and V. unguiculata). In contrast, proteins and leaf proline contents were negatively affected by salt concentration to G. max and P. vulgaris. Seed germination, proteins and proline could be used as physiological criteria of early selection for salt tolerant leguminous plants.展开更多
文摘Dispersed soil clays have a negative impact on soil structure and contribute to soil erosion and contaminant movement. In this study, two typical soils from the south of China were chosen for investigating roles of pH and humic acid (HA) on dispersion of soil clays. Critical flocculation concentration (CFC) of the soil clay suspension was determined by using light transmission at a wavelength of 600 um. The results indicated that effects of pH and HA on dispersion of the soil clays were closely related to the type of the major minerals making up the soil and to the valence of the exchangeable canons as well. At four rates of pH(4, 6, 8 and 10), the CFC for the Na-yellow-brown soil treated with H2O2 was increased from 0.32 to 0.56, 6.0 to 14.0,10.0 to 24.6 and 26.0 to 52.0 mmol L-1 NaCl, respectively when Na-HA was added at the rate of from 0 to 40 mg L-1. With the same Na-HA addition and three pH (6, 8 and 10) treatments, the CFC for the Na-red soil was increased from 0.5 to 20.0, 1.0 to 40.0 and 6.0 to 141.0 mmol L-1 NaCl, respectively. Obviously,pH and HA has greater effects on clay dispersion of the red soil(dominated by 1:1 minerals and oxides)than on that of the yellow-brown soil(dominated by 2: 1 minerals). However, at three rates of pH (6, 8 and 10) and with the addition of Ca-HA from 0 to 40 mg L-1, the CFC of the Ca-yellow-brown soil and Ca-red soil treated with H2O2 was increased from 0.55 to 0.81, 0.75 to 1.28, 0.55 to 1.45 and 0.038 to 0.266, 0.25 to 0.62, 0.7 to 1.6 mmol CaCl2 L-1, respectively. So, Na-soil clays are more sensitive to pH and HA than Ca-soil clays.
文摘The investigation was conducted to determine physiological criteria of early selection for salt tolerant leguminous plants. Plants were subjected to 5 levels of salt stress at the roots (0, 50, 100,150 and 200 mM NaCI). Results showed that sodium chloride had an underrating effect on growth of stems and seed germination of the species studied. The germination rates of seeds of Glycine max and Phaseolus vulgaris (sensitive glyeophytes) were affected from 3 g/L of NaCl, with critical thresholds at 9 and 12 g/L respectively. In contrast, critical thresholds with Mucunapoggei (facultative halophyte), Vigna unguiculata (moderately tolerant glycophyte) and P. adenanthus (natural halophyte) was found to be above 21 g/L. The reduction of stems growth rate were not significant in P. adenanthus whereas in M. poggei and V. unguiculata this inhibition was observed just when nutritive solutions were enriched with 200 mM. The lipid contents were reduced in all the species under salt stress, whereas proteins and proline contents in the leaves were substantially increased in tolerant species (M. poggei, P. adenanthus and V. unguiculata). In contrast, proteins and leaf proline contents were negatively affected by salt concentration to G. max and P. vulgaris. Seed germination, proteins and proline could be used as physiological criteria of early selection for salt tolerant leguminous plants.