Plants growing in nutrient-rich environment are predicted to be less defended than conspecifics under nutrient limitation.However,less is known about the effects of nutrient levels on tolerance and induced resistance,...Plants growing in nutrient-rich environment are predicted to be less defended than conspecifics under nutrient limitation.However,less is known about the effects of nutrient levels on tolerance and induced resistance,and whether the effects differ between native and introduced populations of invasive plants.We performed a greenhouse experiment with introduced(the USA)and native(Argentina)genotypes of Alternanthera philoxeroides in order to study the effects of soil nitrogen levels on plant growth,constitutive and herbivore(Agasicles hygrophila)-induced chemical defense,and herbivory tolerance.We measured total biomass,elongation rate(as proxy of growth rate),carbon and nitrogen,and the concentration of triterpenoid saponins(defensive chemicals)in leaves and roots.Constitutive resistance(+33%higher leaf triterpenoid saponins in control treatment at low nitrogen level)and tolerance[less decreased total biomass after herbivory treatment(−24%and−15%for high and low nitrogen levels)]were favored at lower nitrogen level,while induced resistance was favored at higher nitrogen level(+24%increased leaf triterpenoid saponins after herbivory treatment at high nitrogen level).Constitutive resistance and tolerance exhibited trade-offs with growth rate,while induced resistance positively correlated with growth rate.Additionally,the introduced genotypes had−6%lower content of leaf carbon in the presence of herbivores than the native genotypes at low nitrogen level,but such difference was absent at high nitrogen level.Our results indicate that soil nitrogen levels influence the preference of different defensive strategies of plant,and interweave with herbivory to determine the performance of introduced genotypes.展开更多
The submerged plant species Carolina fanwort(Cabomba caroliniana)has become a dominant invasive aquatic plant in the Lake Taihu Basin(LTB)in China.Introduced species may escape their original specialist enemies and en...The submerged plant species Carolina fanwort(Cabomba caroliniana)has become a dominant invasive aquatic plant in the Lake Taihu Basin(LTB)in China.Introduced species may escape their original specialist enemies and encounter fewer enemies in their new environment.They were assumed to have suffered less herbivory than native species as they are relatively unpalatable(the enemy release hypothesis[ERH]).The objective of this study was to compare the responses of C.caroliniana with those of co-occurring native species to herbivory from native herbivores.We conducted a mesocosm experiment to record the responses of C.caroliniana and two commonly co-occurring native submerged plant counterparts,water thyme(Hydrilla verticillata)and Eurasian watermilfoil(Myriophyllum spicatum),to herbivory by two native generalist gastropod snails,Radix swinhoei and Sinotaia quadrata.Plant morphological traits(total biomass,shoot/root[S/R]biomass ratio and relative growth rate[RGR])and physiological traits(leaf total nonstructural carbohydrate[TNC],lignin,and cellulose)were recorded.The snail S.quadrata rarely influenced the plant traits of the three submerged plants.With the increasing numbers of R.swinhoei treatments,most of the plant traits of H.verticillata and M.spicatum changed,while those of C.caroliniana showed a relatively stable fluctuation.This result indicates that C.caroliniana is more resistant to herbivory by the snail R.swinhoei,which is consistent with the ERH hypothesis.This finding indicates that herbivorous snail species contributes to the invasion of C.caroliniana,which potentially alters the species composition of submerged plants in the plant community.展开更多
基金supported by the National Natural Science Foundation of China(grant no.41771053,32071659,31961133028 and 32030067).
文摘Plants growing in nutrient-rich environment are predicted to be less defended than conspecifics under nutrient limitation.However,less is known about the effects of nutrient levels on tolerance and induced resistance,and whether the effects differ between native and introduced populations of invasive plants.We performed a greenhouse experiment with introduced(the USA)and native(Argentina)genotypes of Alternanthera philoxeroides in order to study the effects of soil nitrogen levels on plant growth,constitutive and herbivore(Agasicles hygrophila)-induced chemical defense,and herbivory tolerance.We measured total biomass,elongation rate(as proxy of growth rate),carbon and nitrogen,and the concentration of triterpenoid saponins(defensive chemicals)in leaves and roots.Constitutive resistance(+33%higher leaf triterpenoid saponins in control treatment at low nitrogen level)and tolerance[less decreased total biomass after herbivory treatment(−24%and−15%for high and low nitrogen levels)]were favored at lower nitrogen level,while induced resistance was favored at higher nitrogen level(+24%increased leaf triterpenoid saponins after herbivory treatment at high nitrogen level).Constitutive resistance and tolerance exhibited trade-offs with growth rate,while induced resistance positively correlated with growth rate.Additionally,the introduced genotypes had−6%lower content of leaf carbon in the presence of herbivores than the native genotypes at low nitrogen level,but such difference was absent at high nitrogen level.Our results indicate that soil nitrogen levels influence the preference of different defensive strategies of plant,and interweave with herbivory to determine the performance of introduced genotypes.
基金supported by the National Science Foundation of China(NSFC)(31930074,41877415 and 32001157)the Science and Technology Service Network Initiative(KFJ-STS-QYZD-156)+2 种基金the Chinese Academy of Sciences(CAS)the Project of the Young Scientist Group(2021NIGLAS-CJH01)Nanjing Institute of Geography and Limnology(NIGLAS),CAS.
文摘The submerged plant species Carolina fanwort(Cabomba caroliniana)has become a dominant invasive aquatic plant in the Lake Taihu Basin(LTB)in China.Introduced species may escape their original specialist enemies and encounter fewer enemies in their new environment.They were assumed to have suffered less herbivory than native species as they are relatively unpalatable(the enemy release hypothesis[ERH]).The objective of this study was to compare the responses of C.caroliniana with those of co-occurring native species to herbivory from native herbivores.We conducted a mesocosm experiment to record the responses of C.caroliniana and two commonly co-occurring native submerged plant counterparts,water thyme(Hydrilla verticillata)and Eurasian watermilfoil(Myriophyllum spicatum),to herbivory by two native generalist gastropod snails,Radix swinhoei and Sinotaia quadrata.Plant morphological traits(total biomass,shoot/root[S/R]biomass ratio and relative growth rate[RGR])and physiological traits(leaf total nonstructural carbohydrate[TNC],lignin,and cellulose)were recorded.The snail S.quadrata rarely influenced the plant traits of the three submerged plants.With the increasing numbers of R.swinhoei treatments,most of the plant traits of H.verticillata and M.spicatum changed,while those of C.caroliniana showed a relatively stable fluctuation.This result indicates that C.caroliniana is more resistant to herbivory by the snail R.swinhoei,which is consistent with the ERH hypothesis.This finding indicates that herbivorous snail species contributes to the invasion of C.caroliniana,which potentially alters the species composition of submerged plants in the plant community.