期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
寄主植物—植食性害虫—杀虫剂三者的关系 被引量:3
1
作者 张睿 《山西农业科学》 2011年第3期276-277,294,共3页
寄主植物依靠自身分泌的次生代谢物质抵御植食性害虫的侵害,植食性害虫通过诱导体内解毒酶活性的变化来减轻植物次生代谢物质的毒害作用。植食性害虫体内用于次生代谢物质和杀虫剂代谢的解毒酶系是相同或者相似的。不同寄主植物诱导害... 寄主植物依靠自身分泌的次生代谢物质抵御植食性害虫的侵害,植食性害虫通过诱导体内解毒酶活性的变化来减轻植物次生代谢物质的毒害作用。植食性害虫体内用于次生代谢物质和杀虫剂代谢的解毒酶系是相同或者相似的。不同寄主植物诱导害虫体内解毒酶系发生不同的变化,进而使害虫对杀虫剂的敏感性发生变化。因而,寄主植物在植食性害虫与杀虫剂的关系中发挥重要作用。在探讨寄主植物—植食性害虫—杀虫剂三者关系的基础上,对目前寄主植物在害虫防治工作中的应用及发展前景进行了简单的探讨。 展开更多
关键词 寄主植物 植食性害虫 杀虫剂 解毒酶
下载PDF
不同防治措施对花椰菜地节肢动物群落结构的影响 被引量:8
2
作者 曾粮斌 程毅 +4 位作者 严准 马骏 任顺祥 魏林 薛召东 《中国农业科学》 CAS CSCD 北大核心 2016年第15期2965-2976,共12页
【目的】明确不同防治措施对花椰菜地节肢动物群落特征的影响,为花椰菜地害虫防治和天敌保护利用提供理论依据。【方法】设置不施药对照区、生物农药防治区和化学农药防治区,按5点随机取样,记录植株和地面所有节肢动物的数量。在田间定... 【目的】明确不同防治措施对花椰菜地节肢动物群落特征的影响,为花椰菜地害虫防治和天敌保护利用提供理论依据。【方法】设置不施药对照区、生物农药防治区和化学农药防治区,按5点随机取样,记录植株和地面所有节肢动物的数量。在田间定点埋放盛有洗衣粉水溶液的玻璃瓶调查在地表活动的节肢动物种类及数量,根据调查结果分析不同防治措施下花椰菜地节肢动物群落特征的差异。【结果】在广州花椰菜地共调查到节肢动物87种,其中植食性害虫29种,捕食性天敌54种,中性昆虫4种。防治措施明显影响节肢动物群落的物种数及其数量。不施药对照区的捕食性天敌、植食性害虫和中性昆虫的数量均高于其他两种施药防治处理区,不同处理区节肢动物群落物种数及其个体数为不施药对照区>生物农药防治区>化学农药防治区。花椰菜地植食性昆虫功能类群的优势集中性以花椰菜苗期为最小,成熟期最大;捕食性天敌的优势集中性在不同防治区同样以苗期相对较小,而在不施药防治对照区花椰菜各生育期,其大小接近一致;在施药防治区,捕食性天敌的优势集中性表现出波动现象。在花椰菜不同生育期以及不同防治措施区节肢动物群落的优势种不同。整个生育期优势度指数>0.1的有烟粉虱、桃蚜、小菜蛾、菜青虫、前凹狼蛛、拟环纹豹蛛和八斑鞘腹蛛。花椰菜地节肢动物群落多样性指数(H′)在不同防治区和花椰菜各生育期之间均呈现不同程度的差异,各指数之间的变化趋势相似。群落整体多样性指数随花椰菜生长而增大,至中后期达到最大,此结果与田间群落的发展动态相吻合,在不同防治区之间的多样性指数为不施药对照区>生物农药防治区>化学农药防治区。均匀度指数在不同生育期和防治处理区的变化程度相似。害虫亚群落多样性与群落整体多样性变化趋势相似,其多样性指数在花椰菜生长中后期达到最大。不同防治措施区之间的多样性指数为不施药对照区>生物农药防治区>化学农药防治区,其中以化学农药防治区花椰菜苗期为最小。均匀度在花椰菜苗期为最大,而后随花椰菜生长而减小。捕食性天敌亚群落多样性在花椰菜各个生育期和防治处理之间变化相对平稳。地表节肢动物的调查表明,两种药剂处理区所施药剂对地表节肢动物的杀伤较大。同时,从地表节肢动物数量和捕食性天敌的数量动态来看,地表中性昆虫对捕食性天敌前期的定殖有一定的作用。蜘蛛与植食性昆虫、中性昆虫以及捕食性昆虫具有极显著的相关性,捕食性昆虫与中性昆虫之间也具极显著的相关性,表明这些功能团之间在数量上具有较好的跟随效应。捕食性昆虫与植食性昆虫之间相关未能达到显著水平。【结论】药剂防治措施虽然能有效降低害虫的种群数量,但也使天敌数量相应减少。地表中性昆虫对捕食性天敌前期的定殖有一定的作用,药剂防治能影响花椰菜地节肢动物群落特征,生物农药对花椰菜地节肢动物群落影响小于化学农药。 展开更多
关键词 花椰菜地 节肢动物 植食性害虫 食性天敌 群落结构
下载PDF
Effect of Colored Sticky Cards on Non-target Insects 被引量:2
3
作者 Zhen CHEN Yihang GE +1 位作者 Xia LIU Rongping KUANG 《Agricultural Science & Technology》 CAS 2015年第5期983-987,共5页
Field experiments to evaluate four different colored sticky cards for trapping non-target insects were conducted in an organic maize field in the Heinigou region of China. Yellow, blue, green, and red sticky cards wer... Field experiments to evaluate four different colored sticky cards for trapping non-target insects were conducted in an organic maize field in the Heinigou region of China. Yellow, blue, green, and red sticky cards were used to trap insects in the field. The total number of insects species caught was 54, with 3,862 individuals recorded. Over half of the specimens caught were non-target insects, including phytophagous insects, particularly dipteran species(including many mosquitoes)(50.3%), followed by target pests(37.0%), and beneficial insects(12.7%). Statistical analysis revealed a significant difference in attraction to target pests, non-target pests, and beneficial insects among treatment groups. The results showed that higher numbers of target pests(Myzus persicae Sulzer, Empoasca flavescens Fabricius, Nysius ericaecshinly Schilling) were caught on yellow sticky card traps compared with blue, green, or red sticky card traps, indicating that yellow was the best trap color for target pests, with green and blue being progressively less attractive. For non-target insects, including phytophagous insects, flies, and mosquitoes,higher numbers of were caught on blue sticky card traps compared with yellow,green, or red sticky card traps. Our study indicated that blue was the most attractive color for flies, especially for the housefly, Musca domestica Linnaeus. Our study also showed that most beneficial insects exhibited preferences to particular trap color characteristics: yellow was the most attractive color for parasitic wasps and lady beetles; blue was the most attractive color for hoverflies and honeybees. In contrast,green and red had no significant attraction to beneficial insects. 展开更多
关键词 Colored sticky cards Color trap Non-target insects Beneficial insects Natural enemies Conservation
下载PDF
Effects of Different Agroecosystems on Prevalence of Different Species of Pests and Coccinellid Predators
4
作者 Robert W. Nyukuri Fred M. E. Wanjala +2 位作者 Evelyn Cheramgoi Jared O. Odhiambo Stella C. Kirui 《Journal of Agricultural Science and Technology(A)》 2012年第6期776-783,共8页
This study was aimed at determining the effects of mixed and single cropping agroecosystems on the prevalence of different species of insect pests and coccinellids. It involved six growing crops: maize Zea mays L., b... This study was aimed at determining the effects of mixed and single cropping agroecosystems on the prevalence of different species of insect pests and coccinellids. It involved six growing crops: maize Zea mays L., beans Phaseolus vulgaris L. and cowpeas Vignaunguiculata L. Walp in single and mixed stands and sampling throughout the phenology of the crops. Eight insect pest species were recorded on maize grown alone, while thirty seven insect species were endemic on cowpea mono cropped and were of six orders whereas twenty two insect pest species occurred on beans. The predator population was most abundant in the mixed stands of maize and beans (2.33 predators per 30 aphids) as compared to their occurrence in pure stands of cowpeas (0.85 predators per 30 aphids) as there were numerous aphids on beans at pre-flowering phase that supported a higher population level of coccinellids. Also, predator population was at the peak during the tussling stage of maize as they fed on the pollen grains while aphids on cowpeas co-existed mutualistically with black ants that protected them against predation. The genus Cheilomenes spp. was the most ubiquitous predator with a mean of 4.00 individuals per 30 aphids while Hippodamiavariegata was the least abundant predator species with a mean of 0.92 individuals per 30 aphids in all the agroecosystems as the Cheilomenes spp. had a faster discovery rate, range of perception, effective capture efficiency and a shorter handling time of a prey. 展开更多
关键词 PHENOLOGY STANDS Zea mays L. Phaseolus vulgaris L. Vignaunguiculata L. Walp AGROECOSYSTEM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部