We sharpen and prove a conjecture suggested by Chen and Xie, which states that in Galerkineigenfunction discretization for -Δu = u3 , when the finite-dimensional subspace is taken as the eigensubspace corresponding t...We sharpen and prove a conjecture suggested by Chen and Xie, which states that in Galerkineigenfunction discretization for -Δu = u3 , when the finite-dimensional subspace is taken as the eigensubspace corresponding to an N-fold eigenvalue of -Δ, the discretized problem has at least 3N-1 distinct nonzero solutions. We also present a related result on the multiplicities of eigenvalues of -Δ.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos.11171051 and 91230103)
文摘We sharpen and prove a conjecture suggested by Chen and Xie, which states that in Galerkineigenfunction discretization for -Δu = u3 , when the finite-dimensional subspace is taken as the eigensubspace corresponding to an N-fold eigenvalue of -Δ, the discretized problem has at least 3N-1 distinct nonzero solutions. We also present a related result on the multiplicities of eigenvalues of -Δ.