根据评定误差的最小包容区域准则(Minimum zone criteria,MZC),应用坐标变换法建立评定椭圆轮廓度误差的5变量鞍点规划模型。因MZC误差评定模型的关键是计算每个测点到理想椭圆轮廓的最小距离,为此采用一维搜索算法求解该最小距离。由...根据评定误差的最小包容区域准则(Minimum zone criteria,MZC),应用坐标变换法建立评定椭圆轮廓度误差的5变量鞍点规划模型。因MZC误差评定模型的关键是计算每个测点到理想椭圆轮廓的最小距离,为此采用一维搜索算法求解该最小距离。由于差分进化(Differential evolution,DE)算法具有概念简单和收敛速度快的优点,文中利用该算法求解评定椭圆轮廓度误差优化问题。给出2个椭圆轮廓度误差评定实例。结果表明,提出的模型和算法可行有效,其评定结果小于应用最小外接椭圆和最大内接椭圆法求得的误差。在相同计算开销的条件下,DE算法的性能指标优于遗传算法和粒子群算法。展开更多
文摘根据评定误差的最小包容区域准则(Minimum zone criteria,MZC),应用坐标变换法建立评定椭圆轮廓度误差的5变量鞍点规划模型。因MZC误差评定模型的关键是计算每个测点到理想椭圆轮廓的最小距离,为此采用一维搜索算法求解该最小距离。由于差分进化(Differential evolution,DE)算法具有概念简单和收敛速度快的优点,文中利用该算法求解评定椭圆轮廓度误差优化问题。给出2个椭圆轮廓度误差评定实例。结果表明,提出的模型和算法可行有效,其评定结果小于应用最小外接椭圆和最大内接椭圆法求得的误差。在相同计算开销的条件下,DE算法的性能指标优于遗传算法和粒子群算法。