期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
方程求根及极坐标法测定椭圆及圆曲线
1
作者 梁立勇 《煤炭工程》 北大核心 2015年第4期57-59,共3页
为了克服常规放样椭圆曲线方法中计算椭圆放样点坐标、支距的困难以及等分法中操作局限性等的不足,介绍了一种通过推导椭圆的轨迹方程和放样点的坐标间的函数关系,从而得出极坐标法放样时放样元素(极角与极距)间函数关系的方法。现场求... 为了克服常规放样椭圆曲线方法中计算椭圆放样点坐标、支距的困难以及等分法中操作局限性等的不足,介绍了一种通过推导椭圆的轨迹方程和放样点的坐标间的函数关系,从而得出极坐标法放样时放样元素(极角与极距)间函数关系的方法。现场求取放样元素时,采用可编程计算器通过程序计算,准确快捷。放样时,依据施工需要使用全站仪拨定一个极角并测取相应的极距,即可快速测得曲线上的椭圆点,以此类推测得整条曲线。 展开更多
关键词 椭圆、圆曲线方程 方程求根 极坐标法 放样
下载PDF
面向大数据的ECC-RBF寻优算法研究
2
作者 施文静 任欣瑶 +2 位作者 武慧慧 雍欣悦 曹敖奇 《内蒙古科技与经济》 2023年第9期102-105,共4页
如何在大数据背景下,为进一步保证网络用户的信息安全,提出了一种基于ECC算法和RBF神经网络相结合的寻优方法。该方法主要利用径向基(RBF)神经网络将有限域椭圆曲线上的数据点和对应的实验条件进行线性逼近,以选取最佳的椭圆曲线。通过... 如何在大数据背景下,为进一步保证网络用户的信息安全,提出了一种基于ECC算法和RBF神经网络相结合的寻优方法。该方法主要利用径向基(RBF)神经网络将有限域椭圆曲线上的数据点和对应的实验条件进行线性逼近,以选取最佳的椭圆曲线。通过对多组数据的仿真实验,进行误差比较,结果表明改进的ECC-RBF算法达到了较好的寻优效果,该算法具有较高的安全性和推广价值。 展开更多
关键词 大数据加密 ECC RBF 椭圆曲线方程
下载PDF
Exact Solutions Expressible in Rational Formal Hyperbolic and Elliptic Functions for Nonlinear Differential-Difference Equation 被引量:3
3
作者 BAI Cheng-Jie ZHAO Hong HAN Ji-Guang 《Communications in Theoretical Physics》 SCIE CAS CSCD 2008年第8期303-308,共6页
A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations... A new approach is presented by means of a new general ansitz and some relations among Jacobian elliptic functions, which enables one to construct more new exact solutions of nonlinear differential-difference equations. As an example, we apply this new method to Hybrid lattice, diseretized mKdV lattice, and modified Volterra lattice. As a result, many exact solutions expressible in rational formal hyperbolic and elliptic functions are conveniently obtained with the help of Maple. 展开更多
关键词 nonlinear differential-difference equations new approach exact solutions
下载PDF
SPEED UP RATIONAL POINT SCALAR MULTIPLICATIONS ON ELLIPTIC CURVES BY FROBENIUS EQUATIONS
4
作者 You Lin Zhao Junzhong Xu Maozhi 《Journal of Electronics(China)》 2006年第1期58-63,共6页
Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding... Let q be a power of a prime and φ be the Frobenius endomorphism on E(Fqk), then q = tφ - φ^2. Applying this equation, a new algorithm to compute rational point scalar multiplications on elliptic curves by finding a suitable small positive integer s such that q^s can be represented as some very sparse φ-polynomial is proposed. If a Normal Basis (NB) or Optimal Normal Basis (ONB) is applied and the precomputations are considered free, our algorithm will cost, on average, about 55% to 80% less than binary method, and about 42% to 74% less than φ-ary method. For some elliptic curves, our algorithm is also taster than Mǖller's algorithm. In addition, an effective algorithm is provided for finding such integer s. 展开更多
关键词 Elliptic curve Point scalar multiplication Frobenius equation q-ary method φ-polynomial
下载PDF
Normal Form of the Elliptic Curve Over the Finite Ring
5
作者 Abdelhamid TADMORI Abdelhakim CHILLALI M'hammed ZIANE 《Journal of Mathematics and System Science》 2014年第3期194-196,共3页
In this work, we will to study the equation of an elliptic curve over the ring An = F2d [E], en = 0.,where d. is a positive integer. More precisely we defined the J-invariant of an elliptic curves over the ring An and... In this work, we will to study the equation of an elliptic curve over the ring An = F2d [E], en = 0.,where d. is a positive integer. More precisely we defined the J-invariant of an elliptic curves over the ring An and we establish re(J) = j, wherej is the j-invariant of an elliptic curve over the field F2d and re is the canonical projection defined over ring An by F2d , see [1]. 展开更多
关键词 Elliptic Curves finite ring J-invariant.
下载PDF
互余关系在密码学中应用及相关性质推广
6
作者 林柏钢 《信息安全与通信保密》 2009年第8期341-344,共4页
互余关系是基础数论中一个重要的理论概念。文中介绍了互余关系在典型椭圆曲线密码(EGG)方程中的简单应用,并根据互余关系和相关性质,进一步给出了互余关系中孙子互余定理一些等价转换定理的若干推论,以及模mi非互素情形的解法和... 互余关系是基础数论中一个重要的理论概念。文中介绍了互余关系在典型椭圆曲线密码(EGG)方程中的简单应用,并根据互余关系和相关性质,进一步给出了互余关系中孙子互余定理一些等价转换定理的若干推论,以及模mi非互素情形的解法和相互关系。这些结果扩充了互余关系的基本理论,而且在密码学中有着实际的应用。 展开更多
关键词 互余关系 椭圆曲线方程 非互素模 互余方程组求解 密码应用
原文传递
Mathieu Equation and Elliptic Curve
7
作者 贺伟 缪炎刚 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第12期827-834,共8页
We present a relation between the Mathieu equation and a particular elliptic curve. We find that the Floquet exponent of the Mathieu equation, for both q《1 and q》1, can be obtained from the integral of a differentia... We present a relation between the Mathieu equation and a particular elliptic curve. We find that the Floquet exponent of the Mathieu equation, for both q《1 and q》1, can be obtained from the integral of a differential one form along the two homology cycles of the elliptic curve. Certain higher order differential operators are needed to generate the WKB expansion. We make a few conjectures about the general structure of these differential operators. 展开更多
关键词 N= 2 super-Yang-Mills elliptic curve Mathieu equation WKB method
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部