In this paper, we give a Z 2 index theory of generalized critical point. By this theory we get a sufficient condition on the existing result of a class functional, as an example we give a new result that the equa...In this paper, we give a Z 2 index theory of generalized critical point. By this theory we get a sufficient condition on the existing result of a class functional, as an example we give a new result that the equation-Δu+u=|u| p-1 u, x∈R N,(1)has infinite solutions.展开更多
In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general in...In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.展开更多
By the subsuper solutions method, the explosive supersolutions and explosive subsol utions are obtained and the exsistence of explosive solutions is proved on a bounded domain for a class of nonlinear elliptic problem...By the subsuper solutions method, the explosive supersolutions and explosive subsol utions are obtained and the exsistence of explosive solutions is proved on a bounded domain for a class of nonlinear elliptic problems.Then, the exsitence of an entire large solution is proved by the perturbed method.展开更多
The boundedness is proved under more general structural conditions to solutions of elliptic variational inequalities and a priori estimates are obtained to maximum modulus of solutions for some special cases.
The decay estimations of the solution to an elliptic equation with dynamical boundary condition is considered.We proved that,for suitable initial datum,the energy of the solution decays "in time" exponential...The decay estimations of the solution to an elliptic equation with dynamical boundary condition is considered.We proved that,for suitable initial datum,the energy of the solution decays "in time" exponentially if p=0,whereas the decay is polynomial order if p>0.展开更多
Homogenization is concerned with obtaining the average properties of a material. The problem on its own has no easy solution, except in cases like the periodic case, when it can be obtained in closed form. In this pap...Homogenization is concerned with obtaining the average properties of a material. The problem on its own has no easy solution, except in cases like the periodic case, when it can be obtained in closed form. In this paper we consider a numerical solution of the elliptic homogenization problem for the case of rapidly varying tensor or boundary conditions. The method makes use of an adaptive finite element method to correctly capture the rapid change in the tensor or boundary condition. In the numerical experiments we vary the mesh size and do a posteriori error analysis on test problems.展开更多
We investigate the boundary vaJue problem (BVP) of a quasi-one-dimensional Gross-Pitaevskii equation with the Kronig-Penney potential (KPP) of period d, which governs a repulsive Bose-Einstein condensate. Under th...We investigate the boundary vaJue problem (BVP) of a quasi-one-dimensional Gross-Pitaevskii equation with the Kronig-Penney potential (KPP) of period d, which governs a repulsive Bose-Einstein condensate. Under the zero and periodic boundary conditions, we show how to determine n exact stationary eigenstates {Rn} corresponding to different chemical potentials {μn} from the known solutions of the system. The n-th eigenstate P~ is the Jacobian elliptic function with period 2din for n = 1,2,…, and with zero points containing the potential barrier positions. So Rn is differentiable at any spatial point and R2 describes n complete wave-packets in each period of the KPP. It is revealed that one can use a laser pulse modeled by a 5 potential at site xi to manipulate the transitions from the states of {Rn} with zero Point x≠xi to the states of {Rn'} with zero Point x= Xi. The results suggest an experimental scheme for applying BEC to test the BVP and to observe the macroscopic quantum transitions.展开更多
In the recent past many results have been established on positive solutions to boundary value problems of the form- div (|Du(x)| p-2 Du(x))=λf(u(x))} in} Ω, u(x)=0 on Ω,where λ>0, Ω is a bounded...In the recent past many results have been established on positive solutions to boundary value problems of the form- div (|Du(x)| p-2 Du(x))=λf(u(x))} in} Ω, u(x)=0 on Ω,where λ>0, Ω is a bounded smooth domain and f(s)≥ 0 for s≥ 0 . In this paper we study a priori estimates of positive radial solutions of such problems when N>p>1, Ω=B 1={x∈R N ; | x |<1} and f∈C 1(0,∞)∩ C 0([0,∞)), f(0)=0 .展开更多
This paper is concerned with a singular elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and multiple critical exponents. By analytic technics and variational methods, the extremals of the corr...This paper is concerned with a singular elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and multiple critical exponents. By analytic technics and variational methods, the extremals of the corresponding bet Hardy-Sobolev constant are found, the existence of positive solutions to the system is established and the asymptotic properties of solutions at the singular point are proved.展开更多
In this paper,a system of elliptic equations is investigated,which involves Hardy potential and multiple critical Sobolev exponents.By a global compactness argument of variational method and a fine analysis on the Pal...In this paper,a system of elliptic equations is investigated,which involves Hardy potential and multiple critical Sobolev exponents.By a global compactness argument of variational method and a fine analysis on the Palais-Smale sequences created from related approximation problems,the existence of infinitely many solutions to the system is established.展开更多
In this paper, we study the following degenerate critical elliptic equation with anisotropic coefficients-div(|x N | 2α▽u) = K(x)|x N | α·2 * (s)-s |u| 2 * (s)-2 u in R N ,where x = (x 1 , . . . , x N ) ∈ R N...In this paper, we study the following degenerate critical elliptic equation with anisotropic coefficients-div(|x N | 2α▽u) = K(x)|x N | α·2 * (s)-s |u| 2 * (s)-2 u in R N ,where x = (x 1 , . . . , x N ) ∈ R N , N≥3, α > 1/2, 0≤ s ≤2 and 2 * (s) = 2(N-s)/(N-2). Some basic properties of the degenerate elliptic operator -div(|x N |2α▽u) are investigated and some regularity, symmetry and uniqueness results for entire solutions of this equation are obtained. We also get some variational identities for solutions of this equation. As consequences, we obtain some nonexistence results for this equation.展开更多
In this paper,we study the very weak solutions to some nonlinear elliptic systems with righthand side integrable data with respect to the distance to the boundary.Firstly,we study the existence of the approximate solu...In this paper,we study the very weak solutions to some nonlinear elliptic systems with righthand side integrable data with respect to the distance to the boundary.Firstly,we study the existence of the approximate solutions.Secondly,a priori estimates are given in the framework of weighted spaces.Finally,we prove the existence,uniqueness and regularity of the very weak solutions.展开更多
By making use of Variational method, the authors obtain some results about existence of multiple positive solutions and their asymptotic behavior as the parameter →+∞ for a semilinear elliptic problem in RN.
In this paper,we study the existence and concentration of weak solutions to the p-Laplacian type elliptic problem-εp△pu+V(z)|u|p-2u-f(u)=0 in Ω,u=0 on ■Ω,u>0 in Ω,N>p>2,where Ω is a domain in RN,possib...In this paper,we study the existence and concentration of weak solutions to the p-Laplacian type elliptic problem-εp△pu+V(z)|u|p-2u-f(u)=0 in Ω,u=0 on ■Ω,u>0 in Ω,N>p>2,where Ω is a domain in RN,possibly unbounded,with empty or smooth boundary,εis a small positive parameter,f∈C1(R+,R)is of subcritical and V:RN→R is a locally Hlder continuous function which is bounded from below,away from zero,such that infΛV<min ■ΛV for some open bounded subset Λ of Ω.We prove that there is anε0>0 such that for anyε∈(0,ε0],the above mentioned problem possesses a weak solution uεwith exponential decay.Moreover,uεconcentrates around a minimum point of the potential V inΛ.Our result generalizes a similar result by del Pino and Felmer(1996)for semilinear elliptic equations to the p-Laplacian type problem.展开更多
New embeddings of some weighted Sobolev spaces with weights a(x)and b(x)are established.The weights a(x)and b(x)can be singular.Some applications of these embeddings to a class of degenerate elliptic problems of the f...New embeddings of some weighted Sobolev spaces with weights a(x)and b(x)are established.The weights a(x)and b(x)can be singular.Some applications of these embeddings to a class of degenerate elliptic problems of the form-div(a(x)?u)=b(x)f(x,u)in?,u=0 on??,where?is a bounded or unbounded domain in RN,N 2,are presented.The main results of this paper also give some generalizations of the well-known Caffarelli-Kohn-Nirenberg inequality.展开更多
The author presents a method allowing to obtain existence of a solution for some elliptic problems set in unbounded domains,and shows exponential rate of convergence of the approximate solution toward the solution.
Using variational method, the authors get an existence result for positive solutions of a superlinear elliptic boundary value problem without assuming the P.S. condition. To prove the results in this paper, the author...Using variational method, the authors get an existence result for positive solutions of a superlinear elliptic boundary value problem without assuming the P.S. condition. To prove the results in this paper, the authors adopt the method of gradient flow and use a new class of truncation functions.展开更多
文摘In this paper, we give a Z 2 index theory of generalized critical point. By this theory we get a sufficient condition on the existing result of a class functional, as an example we give a new result that the equation-Δu+u=|u| p-1 u, x∈R N,(1)has infinite solutions.
文摘In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.
基金National Natural Science Foundation of China (No.10131050)
文摘By the subsuper solutions method, the explosive supersolutions and explosive subsol utions are obtained and the exsistence of explosive solutions is proved on a bounded domain for a class of nonlinear elliptic problems.Then, the exsitence of an entire large solution is proved by the perturbed method.
文摘The boundedness is proved under more general structural conditions to solutions of elliptic variational inequalities and a priori estimates are obtained to maximum modulus of solutions for some special cases.
基金Supported by the National Natural Science Foundation of China(10671182)Supported by the Natural Science Foundation of Henan Province(0611053300+1 种基金200510463024)Supported by the Young Skeleton Teacher Project of the Higher School of Henan Province
文摘The decay estimations of the solution to an elliptic equation with dynamical boundary condition is considered.We proved that,for suitable initial datum,the energy of the solution decays "in time" exponentially if p=0,whereas the decay is polynomial order if p>0.
文摘Homogenization is concerned with obtaining the average properties of a material. The problem on its own has no easy solution, except in cases like the periodic case, when it can be obtained in closed form. In this paper we consider a numerical solution of the elliptic homogenization problem for the case of rapidly varying tensor or boundary conditions. The method makes use of an adaptive finite element method to correctly capture the rapid change in the tensor or boundary condition. In the numerical experiments we vary the mesh size and do a posteriori error analysis on test problems.
基金The project supported by the National Natural Science Foundation of China under Grant Nos.10575034 and 10875039
文摘We investigate the boundary vaJue problem (BVP) of a quasi-one-dimensional Gross-Pitaevskii equation with the Kronig-Penney potential (KPP) of period d, which governs a repulsive Bose-Einstein condensate. Under the zero and periodic boundary conditions, we show how to determine n exact stationary eigenstates {Rn} corresponding to different chemical potentials {μn} from the known solutions of the system. The n-th eigenstate P~ is the Jacobian elliptic function with period 2din for n = 1,2,…, and with zero points containing the potential barrier positions. So Rn is differentiable at any spatial point and R2 describes n complete wave-packets in each period of the KPP. It is revealed that one can use a laser pulse modeled by a 5 potential at site xi to manipulate the transitions from the states of {Rn} with zero Point x≠xi to the states of {Rn'} with zero Point x= Xi. The results suggest an experimental scheme for applying BEC to test the BVP and to observe the macroscopic quantum transitions.
文摘In the recent past many results have been established on positive solutions to boundary value problems of the form- div (|Du(x)| p-2 Du(x))=λf(u(x))} in} Ω, u(x)=0 on Ω,where λ>0, Ω is a bounded smooth domain and f(s)≥ 0 for s≥ 0 . In this paper we study a priori estimates of positive radial solutions of such problems when N>p>1, Ω=B 1={x∈R N ; | x |<1} and f∈C 1(0,∞)∩ C 0([0,∞)), f(0)=0 .
基金supported by National Natural Science Foundation of China (Grant No. 10771219, 11071092)the PhD Specialized Grant of the Ministry of Education of China (Grant No. 20100144110001)
文摘This paper is concerned with a singular elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and multiple critical exponents. By analytic technics and variational methods, the extremals of the corresponding bet Hardy-Sobolev constant are found, the existence of positive solutions to the system is established and the asymptotic properties of solutions at the singular point are proved.
基金supported by National Natural Science Foundation of China(Grant Nos.10771219 and 11071092)the PhD Specialized Grant of the Ministry of Education of China(Grant No.20110144110001)
文摘In this paper,a system of elliptic equations is investigated,which involves Hardy potential and multiple critical Sobolev exponents.By a global compactness argument of variational method and a fine analysis on the Palais-Smale sequences created from related approximation problems,the existence of infinitely many solutions to the system is established.
基金supported by National Natural Science Foundation of China (Grant Nos. 10901112, 11001255)Beijing Natural Science Foundation (Grant No. 1102013)China Postdoctoral Science Foundation (Grant No. 20090460548)
文摘In this paper, we study the following degenerate critical elliptic equation with anisotropic coefficients-div(|x N | 2α▽u) = K(x)|x N | α·2 * (s)-s |u| 2 * (s)-2 u in R N ,where x = (x 1 , . . . , x N ) ∈ R N , N≥3, α > 1/2, 0≤ s ≤2 and 2 * (s) = 2(N-s)/(N-2). Some basic properties of the degenerate elliptic operator -div(|x N |2α▽u) are investigated and some regularity, symmetry and uniqueness results for entire solutions of this equation are obtained. We also get some variational identities for solutions of this equation. As consequences, we obtain some nonexistence results for this equation.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.DUT13JS05)
文摘In this paper,we study the very weak solutions to some nonlinear elliptic systems with righthand side integrable data with respect to the distance to the boundary.Firstly,we study the existence of the approximate solutions.Secondly,a priori estimates are given in the framework of weighted spaces.Finally,we prove the existence,uniqueness and regularity of the very weak solutions.
基金the National Natural Science Foundation of China!(No. 19771072) CaoGuangbiao Fund of Zhejiang University
文摘By making use of Variational method, the authors obtain some results about existence of multiple positive solutions and their asymptotic behavior as the parameter →+∞ for a semilinear elliptic problem in RN.
基金supported by National Natural Science Foundation of China(Grant Nos.11071095 and 11371159)Hubei Key Laboratory of Mathematical Sciences
文摘In this paper,we study the existence and concentration of weak solutions to the p-Laplacian type elliptic problem-εp△pu+V(z)|u|p-2u-f(u)=0 in Ω,u=0 on ■Ω,u>0 in Ω,N>p>2,where Ω is a domain in RN,possibly unbounded,with empty or smooth boundary,εis a small positive parameter,f∈C1(R+,R)is of subcritical and V:RN→R is a locally Hlder continuous function which is bounded from below,away from zero,such that infΛV<min ■ΛV for some open bounded subset Λ of Ω.We prove that there is anε0>0 such that for anyε∈(0,ε0],the above mentioned problem possesses a weak solution uεwith exponential decay.Moreover,uεconcentrates around a minimum point of the potential V inΛ.Our result generalizes a similar result by del Pino and Felmer(1996)for semilinear elliptic equations to the p-Laplacian type problem.
基金supported by National Natural Science Foundation of China (Grant Nos. 11171092, 11571093 and 11371117)
文摘New embeddings of some weighted Sobolev spaces with weights a(x)and b(x)are established.The weights a(x)and b(x)can be singular.Some applications of these embeddings to a class of degenerate elliptic problems of the form-div(a(x)?u)=b(x)f(x,u)in?,u=0 on??,where?is a bounded or unbounded domain in RN,N 2,are presented.The main results of this paper also give some generalizations of the well-known Caffarelli-Kohn-Nirenberg inequality.
基金supported by the Ministry of Education and Science of the Russian Federation(No.02.a03.21.0008)
文摘The author presents a method allowing to obtain existence of a solution for some elliptic problems set in unbounded domains,and shows exponential rate of convergence of the approximate solution toward the solution.
基金Project supported by the National Natural Science Foundation of China and the Research Fund for the Doctoral Program of Higher
文摘Using variational method, the authors get an existence result for positive solutions of a superlinear elliptic boundary value problem without assuming the P.S. condition. To prove the results in this paper, the authors adopt the method of gradient flow and use a new class of truncation functions.