针对现有的多学科可靠性分析方法只进行系统级优化,使系统级优化器的工作负担过重、求解效率低下的问题,提出一种基于性能策略法(Performance Measure Approach,PMA)的多学科遗传协同(Collaborative Optimization Based On Genetic Algo...针对现有的多学科可靠性分析方法只进行系统级优化,使系统级优化器的工作负担过重、求解效率低下的问题,提出一种基于性能策略法(Performance Measure Approach,PMA)的多学科遗传协同(Collaborative Optimization Based On Genetic Algorithm,GA-CO)可靠性分析方法(PMA-GA-CO)。该方法将PMA方法与多学科协同优化算法结合进行复杂系统工程可靠性分析。同时,采用遗传算法求解系统级可靠性优化问题,克服多学科协同优化算法中拉格朗日乘子不存在的缺陷。在PMA-GA-CO方法中所有的学科能够独立的进行优化,这样不仅解除了所有学科之间的耦合,提高了搜索最大可能点(Most Probable Point,MPP)的效率,而且学科级能进行优化,系统级优化器的负担可显著地降低。通过散货船概念设计多学科可靠性分析的工程例子证明了文中提出方法的效率和精度,这个优点在大规模的复杂工程系统的设计中能够更好地体现出来。展开更多
文摘针对现有的多学科可靠性分析方法只进行系统级优化,使系统级优化器的工作负担过重、求解效率低下的问题,提出一种基于性能策略法(Performance Measure Approach,PMA)的多学科遗传协同(Collaborative Optimization Based On Genetic Algorithm,GA-CO)可靠性分析方法(PMA-GA-CO)。该方法将PMA方法与多学科协同优化算法结合进行复杂系统工程可靠性分析。同时,采用遗传算法求解系统级可靠性优化问题,克服多学科协同优化算法中拉格朗日乘子不存在的缺陷。在PMA-GA-CO方法中所有的学科能够独立的进行优化,这样不仅解除了所有学科之间的耦合,提高了搜索最大可能点(Most Probable Point,MPP)的效率,而且学科级能进行优化,系统级优化器的负担可显著地降低。通过散货船概念设计多学科可靠性分析的工程例子证明了文中提出方法的效率和精度,这个优点在大规模的复杂工程系统的设计中能够更好地体现出来。