A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morp...A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morphological charts and biomimetics was applied where the foremost requirements in terms of the material characteristics, function specifications, force identification, root cause analysis, geometry profile and design selection criteria were considered. The strategy was to use creations of nature to inspire five innovative conceptual designs of the ACB structure and the AHP method was applied to perform the pairwise analysis of selecting the best ACB conceptual design. A new conceptual design for a composite ACB was conceived bearing in mind the properties of natural fibre, unlike those of conventional materials such as steel alloys and aluminium alloys. The design with the highest ranking(26.6 %) was chosen as the final conceptual design, which was the one with a honeycomb structure for the outermost profile, reinforced with a spider web structure inside the part, supported by fibre foam structure extracted from the woodpecker sponge tissue at the centre to maximize the energy absorption capability. The new design could solve the problem of bending collapse which is a major cause of failure to absorb maximum impact energy for ACB during collision. However, the final conceptual design will still need several modifications for production and assembly purposes, which will be completed in a further study.展开更多
Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating...Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms.展开更多
This paper presented an investigation of atomization characteristics including the velocity vector field and the mean droplet sizes for different percentages of DMM-diesel blended fuels using a phase doppler anemometr...This paper presented an investigation of atomization characteristics including the velocity vector field and the mean droplet sizes for different percentages of DMM-diesel blended fuels using a phase doppler anemometry (PDA) analyzer system. Based on the fuel design concept, an oxygenated fuel named dimethoxy methane (DMM), which has lower viscosity, surface tension, and boiling point, was used to blend with diesel. The experiments were carried out under atmospheric conditions on a single-hole type diesel nozzle, liquid conditions comprise a temperature of 298 K under the needle valve opening pressure of 6 MPa. The results show that the sauter mean diameter (SMD) and spray cone angle of blended fuels decrease with the increase of DMM content; the axial mean velocity in the centerline increases with the increase of DMM. However, the spray behavior of blended fuel in which DMM exceeds 75% is virtually identical to that of neat DMM. The measurement also reveals the existence of an "S" shape in the radial mean velocity variations with radial distance.展开更多
Regional design is the design method based on the geographical characteristics, and the natural environment is basic factors. This paper puts forward to the regional product design thought patterns and makes some brie...Regional design is the design method based on the geographical characteristics, and the natural environment is basic factors. This paper puts forward to the regional product design thought patterns and makes some brief comments on its value and social significance of the design, in a long run, with exploratory guiding significance.展开更多
Conceptual design plays an important role in product life cycle, which requires engineers to use sound design theory, cross-disciplinary knowledge, and complex technical support to acquire design concepts. However, th...Conceptual design plays an important role in product life cycle, which requires engineers to use sound design theory, cross-disciplinary knowledge, and complex technical support to acquire design concepts. However, the lack of sufficient computational tools makes it difficult for designers to fully explore in the wide design solution spaces. Therefore, this paper proposes an integrated cognitive computing approach to formalize the cognitive activities of conceptual design. A cognitive computing model composed of concept associative memory, concept generation, and decision-making process is established based on the integration of cognitive psychology and engineering design. First of all, the Hopfield neural network is used to acquire similar concept solutions for specific subfunctions from a knowledge base. Then, morphological matrix and genetic algorithm are introduced to produce a set of feasible candidate solutions in the concept generation process. Furthermore, a technique for order preference by similarity to an ideal solution is applied to evaluate the generated concept solutions and obtain the optimal solution automatically. Finally, a case study is given to demonstrate the effectiveness and efficiency of the proposed approach.展开更多
基金Project(6369107)supported by the Ministry of Higher Education,Malaysia
文摘A hybrid conceptual design approach was introduced in this study to develop a conceptual design of oil palm polymer composite automotive crash box(ACB). A combination of theory of inventive problem solving(TRIZ), morphological charts and biomimetics was applied where the foremost requirements in terms of the material characteristics, function specifications, force identification, root cause analysis, geometry profile and design selection criteria were considered. The strategy was to use creations of nature to inspire five innovative conceptual designs of the ACB structure and the AHP method was applied to perform the pairwise analysis of selecting the best ACB conceptual design. A new conceptual design for a composite ACB was conceived bearing in mind the properties of natural fibre, unlike those of conventional materials such as steel alloys and aluminium alloys. The design with the highest ranking(26.6 %) was chosen as the final conceptual design, which was the one with a honeycomb structure for the outermost profile, reinforced with a spider web structure inside the part, supported by fibre foam structure extracted from the woodpecker sponge tissue at the centre to maximize the energy absorption capability. The new design could solve the problem of bending collapse which is a major cause of failure to absorb maximum impact energy for ACB during collision. However, the final conceptual design will still need several modifications for production and assembly purposes, which will be completed in a further study.
文摘Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the orooosed method and associated algorithms.
基金The Nature Science Foundation of Shanghai(No.06ZR14045)
文摘This paper presented an investigation of atomization characteristics including the velocity vector field and the mean droplet sizes for different percentages of DMM-diesel blended fuels using a phase doppler anemometry (PDA) analyzer system. Based on the fuel design concept, an oxygenated fuel named dimethoxy methane (DMM), which has lower viscosity, surface tension, and boiling point, was used to blend with diesel. The experiments were carried out under atmospheric conditions on a single-hole type diesel nozzle, liquid conditions comprise a temperature of 298 K under the needle valve opening pressure of 6 MPa. The results show that the sauter mean diameter (SMD) and spray cone angle of blended fuels decrease with the increase of DMM content; the axial mean velocity in the centerline increases with the increase of DMM. However, the spray behavior of blended fuel in which DMM exceeds 75% is virtually identical to that of neat DMM. The measurement also reveals the existence of an "S" shape in the radial mean velocity variations with radial distance.
文摘Regional design is the design method based on the geographical characteristics, and the natural environment is basic factors. This paper puts forward to the regional product design thought patterns and makes some brief comments on its value and social significance of the design, in a long run, with exploratory guiding significance.
基金Project supported by the National Natural Science Foundation of China (Nos. 51322506 and 51205347), the National High-Tech R&D Program (863 Program) of China (No. 2013AA041303), the National Basic Research Program (973 Program) of China (No. 2011CB706503), and the Zhejiang Provincial Natural Science Foundation of China (No. LR14E050003)
文摘Conceptual design plays an important role in product life cycle, which requires engineers to use sound design theory, cross-disciplinary knowledge, and complex technical support to acquire design concepts. However, the lack of sufficient computational tools makes it difficult for designers to fully explore in the wide design solution spaces. Therefore, this paper proposes an integrated cognitive computing approach to formalize the cognitive activities of conceptual design. A cognitive computing model composed of concept associative memory, concept generation, and decision-making process is established based on the integration of cognitive psychology and engineering design. First of all, the Hopfield neural network is used to acquire similar concept solutions for specific subfunctions from a knowledge base. Then, morphological matrix and genetic algorithm are introduced to produce a set of feasible candidate solutions in the concept generation process. Furthermore, a technique for order preference by similarity to an ideal solution is applied to evaluate the generated concept solutions and obtain the optimal solution automatically. Finally, a case study is given to demonstrate the effectiveness and efficiency of the proposed approach.