基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研...基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研究.从标准PHD滤波出发,更为合理地推导出PHD-TBD算法的粒子权重更新计算表达式,实现对目标数的准确估计;同时利用贝叶斯滤波理论,推导出基于量测的新生粒子概率密度采样函数,完成对目标的快速发现.仿真实验表明,与现有的PHD-TBD相比,改进算法能够适应目标扩散情况,准确估计目标数目,并实现对目标的快速发现和位置准确估计.展开更多
基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前...基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前跟踪的实际,合理地推导出CPHD-TBD算法的粒子权重更新表达式;分析了CPHD滤波目标势分布的物理意义,实现了目标势分布更新计算在检测前跟踪的应用.将CPHD滤波和TBD进行有效结合,提出了基于势概率假设密度滤波的检测前跟踪算法,并给出其详细实现步骤.仿真实验证明提出的CPHD-TBD算法与现有概率假设密度检测前跟踪(PHD-TBD)算法相比,能更详细地传递目标分布信息,从本质上改变了PHD-TBD对目标数估计的方式,能更准确稳定估计目标数,实现了对目标的发现和状态准确估计,性能明显更优.展开更多
根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的...根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。展开更多
基金Supported by the National High-Tech Research and Development plan of China under Grant(2006AA12A104)国家自然科学基金资助项目(60705005+1 种基金60572175)教育部博士点科研基金(20070610031)
文摘基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研究.从标准PHD滤波出发,更为合理地推导出PHD-TBD算法的粒子权重更新计算表达式,实现对目标数的准确估计;同时利用贝叶斯滤波理论,推导出基于量测的新生粒子概率密度采样函数,完成对目标的快速发现.仿真实验表明,与现有的PHD-TBD相比,改进算法能够适应目标扩散情况,准确估计目标数目,并实现对目标的快速发现和位置准确估计.
文摘基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density,CPHD)检测前跟踪(Track before detect,TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法,从标准CPHD滤波的粒子权重更新出发,结合检测前跟踪的实际,合理地推导出CPHD-TBD算法的粒子权重更新表达式;分析了CPHD滤波目标势分布的物理意义,实现了目标势分布更新计算在检测前跟踪的应用.将CPHD滤波和TBD进行有效结合,提出了基于势概率假设密度滤波的检测前跟踪算法,并给出其详细实现步骤.仿真实验证明提出的CPHD-TBD算法与现有概率假设密度检测前跟踪(PHD-TBD)算法相比,能更详细地传递目标分布信息,从本质上改变了PHD-TBD对目标数估计的方式,能更准确稳定估计目标数,实现了对目标的发现和状态准确估计,性能明显更优.
文摘根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。