By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Com...By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.展开更多
This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especiall...This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especially, this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN. The comparison between image segmentations with PNNs and with other neural networks is given. The experimental results show that PNNs can be successfully applied to image segmentation for good results.展开更多
Automatic reading procedures in colon cells biopsies allow a faster and precise reading of microscopic biopsies. These procedures implement automatic image segmentation in order to classify cell types as cancerous or ...Automatic reading procedures in colon cells biopsies allow a faster and precise reading of microscopic biopsies. These procedures implement automatic image segmentation in order to classify cell types as cancerous or noncancerous. The authors have developed a new approach aiming to detect colon cancer cells derived from the "Snake" method but using a progressive division of the dimensions of the image to achieve rapid segmentation. The aim of the present paper was to classify different cancerous cell types based on nine morphological parameters and on probabilistic neural network. Three types of cells were used to assess the efficiency of our classifications models, including BH (Benign Hyperplasia), IN (Intraepithelial Neoplasia) that is a precursor state for cancer, and Ca (Carcinoma) that corresponds to abnormal tissue proliferation (cancer). Results showed that among the nine parameters used to classify cells, only three morphologic parameters (area, Xor convex and solidity) were found to be effective in distinguishing the three types of cells. In addition, classification of unknown cells was possible using this method.展开更多
文摘By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid.
文摘This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especially, this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN. The comparison between image segmentations with PNNs and with other neural networks is given. The experimental results show that PNNs can be successfully applied to image segmentation for good results.
文摘Automatic reading procedures in colon cells biopsies allow a faster and precise reading of microscopic biopsies. These procedures implement automatic image segmentation in order to classify cell types as cancerous or noncancerous. The authors have developed a new approach aiming to detect colon cancer cells derived from the "Snake" method but using a progressive division of the dimensions of the image to achieve rapid segmentation. The aim of the present paper was to classify different cancerous cell types based on nine morphological parameters and on probabilistic neural network. Three types of cells were used to assess the efficiency of our classifications models, including BH (Benign Hyperplasia), IN (Intraepithelial Neoplasia) that is a precursor state for cancer, and Ca (Carcinoma) that corresponds to abnormal tissue proliferation (cancer). Results showed that among the nine parameters used to classify cells, only three morphologic parameters (area, Xor convex and solidity) were found to be effective in distinguishing the three types of cells. In addition, classification of unknown cells was possible using this method.