期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
规则与概率相结合的不一致数据子集修复方法 被引量:1
1
作者 张安珍 司佳宇 +2 位作者 梁天宇 朱睿 邱涛 《软件学报》 EI CSCD 北大核心 2024年第9期4448-4468,共21页
不一致数据子集修复问题是数据清洗领域的重要研究问题,现有方法大多是基于完整性约束规则的,采用最小删除元组数量原则进行子集修复.然而,这种方法没有考虑删除元组的质量,导致修复准确性较低.为此,提出规则与概率相结合的子集修复方法... 不一致数据子集修复问题是数据清洗领域的重要研究问题,现有方法大多是基于完整性约束规则的,采用最小删除元组数量原则进行子集修复.然而,这种方法没有考虑删除元组的质量,导致修复准确性较低.为此,提出规则与概率相结合的子集修复方法,建模不一致元组概率使得正确元组的平均概率大于错误元组的平均概率,求解删除元组概率和最小的子集修复方案.此外,为了减小不一致元组概率计算的时间开销,提出一种高效的错误检测方法,减小不一致元组规模.真实数据和合成数据上的实验结果验证所提方法的准确性优于现有最好方法. 展开更多
关键词 不一致数据 函数依赖 子集修复 概率图网络
下载PDF
New Algorithm for Image Target Recognition Based on Fractal Feature Fusion 被引量:2
2
作者 潘秀琴 侯朝桢 苏利敏 《Journal of Beijing Institute of Technology》 EI CAS 2002年第4期342-345,共4页
By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Com... By combining fractal theory with D-S evidence theory, an algorithm based on the fusion of multi-fractal features is presented. Fractal features are extracted, and basic probability assignment function is designed. Comparison and simulation are performed on the new algorithm, the old algorithm based on single feature and the algorithm based on neural network. Results of the comparison and simulation illustrate that the new algorithm is feasible and valid. 展开更多
关键词 FRACTAL feature fusion target recognition
下载PDF
Remote Sensing Image Segmentation with Probabilistic Neural Networks 被引量:4
3
作者 LIUGang 《Geo-Spatial Information Science》 2005年第1期28-32,49,共6页
This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especiall... This paper focuses on the image segmentation with probabilistic neural networks (PNNs). Back propagation neural networks (BpNNs) and multi perceptron neural networks (MLPs) are also considered in this study. Especially, this paper investigates the implementation of PNNs in image segmentation and optimal processing of image segmentation with a PNN. The comparison between image segmentations with PNNs and with other neural networks is given. The experimental results show that PNNs can be successfully applied to image segmentation for good results. 展开更多
关键词 image segmentation probabilistic neural network(PNN)
下载PDF
Automated Classification of Segmented Cancerous Cells in Multispectral Images
4
作者 Alaa Hilal Jamal Charara Ali Al Houseini Walid Hassan Mohamad Nassreddine 《Journal of Life Sciences》 2013年第4期358-362,共5页
Automatic reading procedures in colon cells biopsies allow a faster and precise reading of microscopic biopsies. These procedures implement automatic image segmentation in order to classify cell types as cancerous or ... Automatic reading procedures in colon cells biopsies allow a faster and precise reading of microscopic biopsies. These procedures implement automatic image segmentation in order to classify cell types as cancerous or noncancerous. The authors have developed a new approach aiming to detect colon cancer cells derived from the "Snake" method but using a progressive division of the dimensions of the image to achieve rapid segmentation. The aim of the present paper was to classify different cancerous cell types based on nine morphological parameters and on probabilistic neural network. Three types of cells were used to assess the efficiency of our classifications models, including BH (Benign Hyperplasia), IN (Intraepithelial Neoplasia) that is a precursor state for cancer, and Ca (Carcinoma) that corresponds to abnormal tissue proliferation (cancer). Results showed that among the nine parameters used to classify cells, only three morphologic parameters (area, Xor convex and solidity) were found to be effective in distinguishing the three types of cells. In addition, classification of unknown cells was possible using this method. 展开更多
关键词 Multispectral image CLASSIFICATION morphologic parameters probabilistic neural network.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部