针对杂波环境下的目标跟踪问题,提出了一种基于变分贝叶斯的概率数据关联算法(Variational Bayesian based probabilistic data association algorithm, VB-PDA).该算法首先将关联事件视为一个随机变量并利用多项分布对其进行建模,随后...针对杂波环境下的目标跟踪问题,提出了一种基于变分贝叶斯的概率数据关联算法(Variational Bayesian based probabilistic data association algorithm, VB-PDA).该算法首先将关联事件视为一个随机变量并利用多项分布对其进行建模,随后基于数据集、目标状态、关联事件的联合概率密度函数求取关联事件的后验概率密度函数,最后将关联事件的后验概率密度函数引入变分贝叶斯框架中以获取状态近似后验概率密度函数.相比于概率数据关联算法, VB-PDA算法在提高算法实时性的同时在权重Kullback-Leibler (KL)平均准则下获取了近似程度更高的状态后验概率密度函数.相关仿真实验对提出算法的有效性进行了验证.展开更多
在实际跟踪环境中,杂波测量空间分布特性往往是未知时变的,杂波密度通常被用来描述杂波测量的空间分布特性,是决定多目标自动跟踪性能的核心环境要素。现有的空间稀疏度的杂波密度估计方法(Spatial Clutter Measurement Density Estimat...在实际跟踪环境中,杂波测量空间分布特性往往是未知时变的,杂波密度通常被用来描述杂波测量的空间分布特性,是决定多目标自动跟踪性能的核心环境要素。现有的空间稀疏度的杂波密度估计方法(Spatial Clutter Measurement Density Estimator,SCMDE)在多目标自动跟踪场景下的杂波密度估计偏差急剧增大。针对以上问题,提出了一种基于SCMDE改进的杂波自适应估计方法,通过计算以待估点为中心的超球体内测量来源于杂波的概率估计超球体内真实的杂波个数,消除超球体内目标测量带来杂波密度估计偏差,从而提升复杂环境下多目标自动跟踪的航迹管理性能。展开更多
文摘针对杂波环境下的目标跟踪问题,提出了一种基于变分贝叶斯的概率数据关联算法(Variational Bayesian based probabilistic data association algorithm, VB-PDA).该算法首先将关联事件视为一个随机变量并利用多项分布对其进行建模,随后基于数据集、目标状态、关联事件的联合概率密度函数求取关联事件的后验概率密度函数,最后将关联事件的后验概率密度函数引入变分贝叶斯框架中以获取状态近似后验概率密度函数.相比于概率数据关联算法, VB-PDA算法在提高算法实时性的同时在权重Kullback-Leibler (KL)平均准则下获取了近似程度更高的状态后验概率密度函数.相关仿真实验对提出算法的有效性进行了验证.
文摘在实际跟踪环境中,杂波测量空间分布特性往往是未知时变的,杂波密度通常被用来描述杂波测量的空间分布特性,是决定多目标自动跟踪性能的核心环境要素。现有的空间稀疏度的杂波密度估计方法(Spatial Clutter Measurement Density Estimator,SCMDE)在多目标自动跟踪场景下的杂波密度估计偏差急剧增大。针对以上问题,提出了一种基于SCMDE改进的杂波自适应估计方法,通过计算以待估点为中心的超球体内测量来源于杂波的概率估计超球体内真实的杂波个数,消除超球体内目标测量带来杂波密度估计偏差,从而提升复杂环境下多目标自动跟踪的航迹管理性能。