The reliability of post grouting pile axial resistance was studied by proposing a design method for its probabilistic limit state,which is represented by the partial coefficients of load,end,and side resistance.The hy...The reliability of post grouting pile axial resistance was studied by proposing a design method for its probabilistic limit state,which is represented by the partial coefficients of load,end,and side resistance.The hyperbolic,modified hyperbolic,and polynomial models were employed to predict the ultimate bearing capacity of test piles that were not loaded to damage in field tests.The results were used for the calculation and calibration of the reliability index.The reliability of the probabilistic limit state design method was verified by an engineering case.The results show that the prediction results obtained from the modified hyperbolic model are closest to those obtained through the static load test.The proposed corresponding values of total,side,and end resistance partial coefficients are 1.84,1.66,and 2.73 when the dead and live load partial coefficients are taken as 1.1 and 1.4,respectively.Meanwhile,the corresponding partial coefficients of total,side,and end resistance are 1.70,1.56,and 2.34 when the dead and live load partial coefficients are taken as 1.2 and 1.4,respectively.展开更多
A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability asse...A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability assessment of the engineering design. In underground coal mining applications such as pillar design,however, the inputs of pillar design are variables. This is widely overlooked in the deterministic approach. A probabilistic approach assessing the probability of failure or reliability of a system might be an alternative to the conventional quantitative methodology. This approach can incorporate the degree of uncertainty and deviations of variables and provide more versatile and reliable results. In this research, the reliability of case histories from stable and failed pillars of South Africa presented by Merwe and Mathey is examed. The updated Salamon and Munro strength formula(S-M formula) and Merwe and Mathey strength formula(M-M formula) are evaluated through a probabilistic approach. It is concluded that stable pillar cases have a reliability value greater than 0.83 while the reliability value of failed pillar cases are slightly larger than 0.50. There seems to be a positive relation between safety factor and reliability. The reliability of a pillar increases with pillar width but decreases with depth of cover, pillar height and entry width. The reliability analysis also confirms that M-M strength formula has a better distinction between the stable and failed pillar cases.展开更多
基金The National Natural Science Foundation of China(No.51878160,52008100,52078128).
文摘The reliability of post grouting pile axial resistance was studied by proposing a design method for its probabilistic limit state,which is represented by the partial coefficients of load,end,and side resistance.The hyperbolic,modified hyperbolic,and polynomial models were employed to predict the ultimate bearing capacity of test piles that were not loaded to damage in field tests.The results were used for the calculation and calibration of the reliability index.The reliability of the probabilistic limit state design method was verified by an engineering case.The results show that the prediction results obtained from the modified hyperbolic model are closest to those obtained through the static load test.The proposed corresponding values of total,side,and end resistance partial coefficients are 1.84,1.66,and 2.73 when the dead and live load partial coefficients are taken as 1.1 and 1.4,respectively.Meanwhile,the corresponding partial coefficients of total,side,and end resistance are 1.70,1.56,and 2.34 when the dead and live load partial coefficients are taken as 1.2 and 1.4,respectively.
基金supported by the National Natural Science Foundation of General Programs of China (Nos. 51574244, 51674264 and 51674243)
文摘A deterministic approach is frequently used in engineering design. In this quantitative design methodology, a safety factor, which is typically a strength-to-stress ratio, is derived as an index for the stability assessment of the engineering design. In underground coal mining applications such as pillar design,however, the inputs of pillar design are variables. This is widely overlooked in the deterministic approach. A probabilistic approach assessing the probability of failure or reliability of a system might be an alternative to the conventional quantitative methodology. This approach can incorporate the degree of uncertainty and deviations of variables and provide more versatile and reliable results. In this research, the reliability of case histories from stable and failed pillars of South Africa presented by Merwe and Mathey is examed. The updated Salamon and Munro strength formula(S-M formula) and Merwe and Mathey strength formula(M-M formula) are evaluated through a probabilistic approach. It is concluded that stable pillar cases have a reliability value greater than 0.83 while the reliability value of failed pillar cases are slightly larger than 0.50. There seems to be a positive relation between safety factor and reliability. The reliability of a pillar increases with pillar width but decreases with depth of cover, pillar height and entry width. The reliability analysis also confirms that M-M strength formula has a better distinction between the stable and failed pillar cases.