Complex industrial processes often have multiple operating modes and present time-varying behavior. The data in one mode may follow specific Gaussian or non-Gaussian distributions. In this paper, a numerically efficie...Complex industrial processes often have multiple operating modes and present time-varying behavior. The data in one mode may follow specific Gaussian or non-Gaussian distributions. In this paper, a numerically efficient movingwindow local outlier probability algorithm is proposed, lies key feature is the capability to handle complex data distributions and incursive operating condition changes including slow dynamic variations and instant mode shifts. First, a two-step adaption approach is introduced and some designed updating rules are applied to keep the monitoring model up-to-date. Then, a semi-supervised monitoring strategy is developed with an updating switch rule to deal with mode changes. Based on local probability models, the algorithm has a superior ability in detecting faulty conditions and fast adapting to slow variations and new operating modes. Finally, the utility of the proposed method is demonstrated with a numerical example and a non-isothermal continuous stirred tank reactor.展开更多
The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the ...The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.展开更多
基金Supported by the National Natural Science Foundation of China(61374140)Shanghai Postdoctoral Sustentation Fund(12R21412600)+1 种基金the Fundamental Research Funds for the Central Universities(WH1214039)Shanghai Pujiang Program(12PJ1402200)
文摘Complex industrial processes often have multiple operating modes and present time-varying behavior. The data in one mode may follow specific Gaussian or non-Gaussian distributions. In this paper, a numerically efficient movingwindow local outlier probability algorithm is proposed, lies key feature is the capability to handle complex data distributions and incursive operating condition changes including slow dynamic variations and instant mode shifts. First, a two-step adaption approach is introduced and some designed updating rules are applied to keep the monitoring model up-to-date. Then, a semi-supervised monitoring strategy is developed with an updating switch rule to deal with mode changes. Based on local probability models, the algorithm has a superior ability in detecting faulty conditions and fast adapting to slow variations and new operating modes. Finally, the utility of the proposed method is demonstrated with a numerical example and a non-isothermal continuous stirred tank reactor.
基金Project(51178100)supported by the National Natural Science Foundation of ChinaProject(1105007001)supported by the Foundation of the Priority Academic Development Program of Higher Education Institute of Jiangsu Province,ChinaProject(3205001205)supported by the Teaching and Research Foundation for Excellent Young Teachers of Southeast University,China
文摘The extreme temperature differences in fiat steel box girder of a cable-stayed bridge were studied.Firstly,by using the long-term measurement data collected by the structural health monitoring system installed on the Runyang Cable-stayed Bridge,the daily variations as well as seasonal ones of measured temperature differences in the box girder cross-section area were summarized.The probability distribution models of temperature differences were further established and the extreme temperature differences were estimated with a return period of 100 years.Finally,the temperature difference models in cross-section area were proposed for bridge thermal design.The results show that horizontal temperature differences in top plate and vertical temperature differences between top plate and bottom plate are considerable.All the positive and negative temperature differences can be described by the weighted sum of two Weibull distributions.The maximum positive and negative horizontal temperature differences in top plate are 10.30 ℃ and -13.80 ℃,respectively.And the maximum positive and negative vertical temperature differences between top plate and bottom plate are 17.30 ℃ and-3.70 ℃,respectively.For bridge thermal design,there are two vertical temperature difference models between top plate and bottom plate,and six horizontal temperature difference models in top plate.