期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多属性融合在陵水凹陷烃源岩研究中的应用 被引量:4
1
作者 刘仕友 徐冲 +2 位作者 孙万元 邢军辉 徐晓宇 《特种油气藏》 CAS CSCD 北大核心 2019年第2期23-27,共5页
针对深水区钻井资料少,中深层地震资料品质差,常规手段无法有效进行烃源岩总有机碳含量(TOC)预测的问题,运用ΔlogR法求取测井TOC曲线,运用相关性分析进行地震属性优选,运用多元线性回归和概率类神经网络2种方法进行多属性融合预测TOC,... 针对深水区钻井资料少,中深层地震资料品质差,常规手段无法有效进行烃源岩总有机碳含量(TOC)预测的问题,运用ΔlogR法求取测井TOC曲线,运用相关性分析进行地震属性优选,运用多元线性回归和概率类神经网络2种方法进行多属性融合预测TOC,以陵水凹陷为例建立了一套适用于深水区少井条件下的多属性融合预测烃源岩TOC的技术流程。研究结果体现了概率类神经网络融合预测TOC的优越性,该研究对深水区少井条件下的烃源岩预测具有一定的借鉴意义。 展开更多
关键词 烃源岩 总有机碳含量 多属性融合 概率类神经网络 陵水凹陷
下载PDF
Automated Classification of Segmented Cancerous Cells in Multispectral Images
2
作者 Alaa Hilal Jamal Charara Ali Al Houseini Walid Hassan Mohamad Nassreddine 《Journal of Life Sciences》 2013年第4期358-362,共5页
Automatic reading procedures in colon cells biopsies allow a faster and precise reading of microscopic biopsies. These procedures implement automatic image segmentation in order to classify cell types as cancerous or ... Automatic reading procedures in colon cells biopsies allow a faster and precise reading of microscopic biopsies. These procedures implement automatic image segmentation in order to classify cell types as cancerous or noncancerous. The authors have developed a new approach aiming to detect colon cancer cells derived from the "Snake" method but using a progressive division of the dimensions of the image to achieve rapid segmentation. The aim of the present paper was to classify different cancerous cell types based on nine morphological parameters and on probabilistic neural network. Three types of cells were used to assess the efficiency of our classifications models, including BH (Benign Hyperplasia), IN (Intraepithelial Neoplasia) that is a precursor state for cancer, and Ca (Carcinoma) that corresponds to abnormal tissue proliferation (cancer). Results showed that among the nine parameters used to classify cells, only three morphologic parameters (area, Xor convex and solidity) were found to be effective in distinguishing the three types of cells. In addition, classification of unknown cells was possible using this method. 展开更多
关键词 Multispectral image CLASSIFICATION morphologic parameters probabilistic neural network.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部