In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitt...In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitted from the sender Alice to the receiver Bob with the help of the supervisor Charlie via the only one four-particle cluster state. The receiver can reconstruct the teleported state according to the lmasurement results of the sender and supervisor. Quantum Controlled-NOT (CNOT) gate and POVM are used, which have been accom-plished in a quantum experiment, so it is believed that this scheme will be realized by experirnent. By analysis, the success probability of the proposed scheme reaches 1.0.展开更多
Recently, deterministic joint remote state preparation (JRSP) schemes have been proposed to achieve 100% success probability. In this paper, we propose a new version of deterministic JRSP scheme of an arbitrary two-qu...Recently, deterministic joint remote state preparation (JRSP) schemes have been proposed to achieve 100% success probability. In this paper, we propose a new version of deterministic JRSP scheme of an arbitrary two-qubit state by using the six-qubit cluster state as shared quantum resource. Compared with previous schemes, our scheme has high efficiency since less quantum resource is required, some additional unitary operations and measurements are unnecessary. We point out that the existing two types of deterministic JRSP schemes based on GHZ states and EPR pairs are equivalent.展开更多
Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, th...Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, the sender and the receiver share two partial Bell states and one partial three-qubit GHZ stats as the quantum channel, and the sender can help a remote receiver to prepare a four-particle entangled cluster-type state by using three-qubit projective measurements with certain probability. In the second scheme, the quantum channel is composed of two partial three-qubit GHZ states, the remote state preparation(RSP) can be successfully realized via the positive operator valued measure(POVM), and the two-particle projective measurements are also needed in this process. The total success probability and classical communication cost are calculated.展开更多
基金The work was supported by the National Natural Science Foundation of China under Crant No. 61100205.
文摘In order to teleport an unknown two-par-ticle entangled state via a cluster state, a controlled teleportation schelre is proposed. It is shown that an unknown two-particle entangled state can be successfully transmitted from the sender Alice to the receiver Bob with the help of the supervisor Charlie via the only one four-particle cluster state. The receiver can reconstruct the teleported state according to the lmasurement results of the sender and supervisor. Quantum Controlled-NOT (CNOT) gate and POVM are used, which have been accom-plished in a quantum experiment, so it is believed that this scheme will be realized by experirnent. By analysis, the success probability of the proposed scheme reaches 1.0.
基金Supported by the National Natural Science Foundation of China under Grant Nos.61003287, 61272514, 61170272the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20100005120002+1 种基金the Fok Ying Tong Education Foundation under Grant No.131067the Fundamental Research Funds for the Central Universities under Grant No.BUPT2012RC0221
文摘Recently, deterministic joint remote state preparation (JRSP) schemes have been proposed to achieve 100% success probability. In this paper, we propose a new version of deterministic JRSP scheme of an arbitrary two-qubit state by using the six-qubit cluster state as shared quantum resource. Compared with previous schemes, our scheme has high efficiency since less quantum resource is required, some additional unitary operations and measurements are unnecessary. We point out that the existing two types of deterministic JRSP schemes based on GHZ states and EPR pairs are equivalent.
基金Supported by Excellent Youth Foundation of AnHui under Grant No. 2012SQRL136ZD, Anhui Municipal Natural Science Foundation under Grant No. 1208085QA18, Foundation of Anhui Educational Committee under Grant No. KJ2012B042, Anhui Provincial Natural Science Foundation under Grant No. 1308085MF98
文摘Using partial entangled states as the quantum channel, two schemes for probabilistic remote preparation of the four-particle cluster-type state with real and complex coefficients are presented. In the first scheme, the sender and the receiver share two partial Bell states and one partial three-qubit GHZ stats as the quantum channel, and the sender can help a remote receiver to prepare a four-particle entangled cluster-type state by using three-qubit projective measurements with certain probability. In the second scheme, the quantum channel is composed of two partial three-qubit GHZ states, the remote state preparation(RSP) can be successfully realized via the positive operator valued measure(POVM), and the two-particle projective measurements are also needed in this process. The total success probability and classical communication cost are calculated.