The cooperative motion planning of nonholonomic wheeled mobile manipulators (WMM) with kinematic redundaney in the constrained workspace was studied. A trajectory planning method combining the probabilistic planning...The cooperative motion planning of nonholonomic wheeled mobile manipulators (WMM) with kinematic redundaney in the constrained workspace was studied. A trajectory planning method combining the probabilistic planning and the solving of inverse kinematic equations was presented. First, the probabilistie planning method was used to determine the guide configurations; then the switching objective function was defined and the path of the end-effector was constructed based on these guide configurations ; finally, the inverse kinematic equations of the WMM were solved using the gradient projection method, and the obstacle avoidance trajectory for joints of the WMM was obtained. Simulation results were given to demonstrate the effectiveness of the proposed method.展开更多
This paper presents a novel coverage-based cooperative target acquisition algorithm for hypersonic interceptions. Firstly, the difficulties in the hypersonic trajectory prediction are introduced which invalidate the c...This paper presents a novel coverage-based cooperative target acquisition algorithm for hypersonic interceptions. Firstly, the difficulties in the hypersonic trajectory prediction are introduced which invalidate the conventionally used predicted impact point based mid-course guidance and seeker acquisition. Secondly, in order to optimally estimate and predict the target trajectory information, the interacting multiple model(IMM) algorithm is used with the constant velocity(CV) model, the constant acceleration(CA) model and the Singer model serving as the model set. The target states are described with the probability density function(PDF) based on the IMM prediction. Thirdly, the interceptor seeker target acquisition model is established which considers the blur edge region of the field of view. The cooperative target acquisition algorithm is designed by maximizing the interceptor seekers cooperative coverage of the target high probability region(HPR). Finally, digital simulations prove the effectiveness of the proposed method and reveal that the real challenge in the hypersonic target acquisition is the poor trajectory prediction accuracy which may further result to the unsteadiness of the interceptor trajectories.展开更多
Pairing-deformation-frequency self-consistent cranking Woods-Saxon model is employed to investigate the triaxiality in the ground states of the neutron-rich even-even Mo, Ru isotopes. Deformation evolutions and transi...Pairing-deformation-frequency self-consistent cranking Woods-Saxon model is employed to investigate the triaxiality in the ground states of the neutron-rich even-even Mo, Ru isotopes. Deformation evolutions and transition probabilities have been studied, giving the triaxial shapes in their ground states. The kinematic moments of inertia have been calculated to illustrate the gradually rigid deformation. To understand the origin of the asymmetry shape in this region, we analyze the evolution of single-particle orbits with changing 3, deformation. The present calculations reveal the importance of the triaxial deformation in describing not only static property, but also rotational behaviors in this mass region, providing significant probes into the shell structure around.展开更多
基金the National Natural Science Foundation of China(Grant No.60675051)the Scientific Research Foundation of Heilongjiang Province for the Feeturned Overseas Chinese Scholars
文摘The cooperative motion planning of nonholonomic wheeled mobile manipulators (WMM) with kinematic redundaney in the constrained workspace was studied. A trajectory planning method combining the probabilistic planning and the solving of inverse kinematic equations was presented. First, the probabilistie planning method was used to determine the guide configurations; then the switching objective function was defined and the path of the end-effector was constructed based on these guide configurations ; finally, the inverse kinematic equations of the WMM were solved using the gradient projection method, and the obstacle avoidance trajectory for joints of the WMM was obtained. Simulation results were given to demonstrate the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(Grant Nos.61573374,61503408,61703421,and 61773398)
文摘This paper presents a novel coverage-based cooperative target acquisition algorithm for hypersonic interceptions. Firstly, the difficulties in the hypersonic trajectory prediction are introduced which invalidate the conventionally used predicted impact point based mid-course guidance and seeker acquisition. Secondly, in order to optimally estimate and predict the target trajectory information, the interacting multiple model(IMM) algorithm is used with the constant velocity(CV) model, the constant acceleration(CA) model and the Singer model serving as the model set. The target states are described with the probability density function(PDF) based on the IMM prediction. Thirdly, the interceptor seeker target acquisition model is established which considers the blur edge region of the field of view. The cooperative target acquisition algorithm is designed by maximizing the interceptor seekers cooperative coverage of the target high probability region(HPR). Finally, digital simulations prove the effectiveness of the proposed method and reveal that the real challenge in the hypersonic target acquisition is the poor trajectory prediction accuracy which may further result to the unsteadiness of the interceptor trajectories.
基金supported by the National Key Basic Research Program of China(Grant No.2013CB834402)the National Natural Science Foundation of China(Grant Nos.11235001,11320101004 and 11575007)
文摘Pairing-deformation-frequency self-consistent cranking Woods-Saxon model is employed to investigate the triaxiality in the ground states of the neutron-rich even-even Mo, Ru isotopes. Deformation evolutions and transition probabilities have been studied, giving the triaxial shapes in their ground states. The kinematic moments of inertia have been calculated to illustrate the gradually rigid deformation. To understand the origin of the asymmetry shape in this region, we analyze the evolution of single-particle orbits with changing 3, deformation. The present calculations reveal the importance of the triaxial deformation in describing not only static property, but also rotational behaviors in this mass region, providing significant probes into the shell structure around.