期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于卷积神经网络的樟子松木材密度近红外预测模型优化
1
作者
刘晓利
李耀翔
+2 位作者
彭润东
张哲宇
陈雅
《森林工程》
北大核心
2024年第3期142-151,共10页
近红外光谱分析技术在木材密度的预测方面具有独特的优势,是一种方便且快速的无损检测技术。卷积神经网络作为经典的深度学习模型之一,能够利用卷积和池化操作提取数据中的特征映射进行学习,与传统的学习模型相比具有更强的模型表达能...
近红外光谱分析技术在木材密度的预测方面具有独特的优势,是一种方便且快速的无损检测技术。卷积神经网络作为经典的深度学习模型之一,能够利用卷积和池化操作提取数据中的特征映射进行学习,与传统的学习模型相比具有更强的模型表达能力。为此将卷积神经网络用于近红外光谱预测木材的气干密度,以樟子松为研究对象,获取样本木材横切面的近红外光谱数据,采用杠杆值与学生化残差t检验(HLSR)法剔除奇异样本,采用SGS+MC+Auto(Savitzky-Golay smoothing+mean centering+autoscaling)对光谱数据进行预处理,通过竞争性自适应重加权算法(competitive adaptive reweighted sampling method,CARS)对特征波长进行提取,构建卷积神经网络模型,预测樟子松的气干密度;并与偏最小二乘回归(partial least squares regression,PLSR)、支持向量机(support vector regression,SVR)和BPNN(backpropagation network)神经网络的预测结果进行对比。结果表明,当校正集比例小于0.65时,模型预测结果略低于PLSR模型。但当校正集比例大于0.7时,卷积神经网络(convolution neural network,CNN)模型的预测精度优于其他模型,且随着训练样本比例的增加,模型的性能和稳定性也随之提升。研究表明CNN可以显著提高近红外预测木材气干密度的模型精度,实现基于近红外技术的木材密度有效预测。为木材气干密度无损检测提供了理论基础和科学依据。
展开更多
关键词
木材气干密度
近红外光谱
卷积神经网络
樟子松
:
预测
模型
下载PDF
职称材料
题名
基于卷积神经网络的樟子松木材密度近红外预测模型优化
1
作者
刘晓利
李耀翔
彭润东
张哲宇
陈雅
机构
东北林业大学机电工程学院
出处
《森林工程》
北大核心
2024年第3期142-151,共10页
基金
黑龙江省重点研发计划子课题资助(GA21C030、GA19C006)。
文摘
近红外光谱分析技术在木材密度的预测方面具有独特的优势,是一种方便且快速的无损检测技术。卷积神经网络作为经典的深度学习模型之一,能够利用卷积和池化操作提取数据中的特征映射进行学习,与传统的学习模型相比具有更强的模型表达能力。为此将卷积神经网络用于近红外光谱预测木材的气干密度,以樟子松为研究对象,获取样本木材横切面的近红外光谱数据,采用杠杆值与学生化残差t检验(HLSR)法剔除奇异样本,采用SGS+MC+Auto(Savitzky-Golay smoothing+mean centering+autoscaling)对光谱数据进行预处理,通过竞争性自适应重加权算法(competitive adaptive reweighted sampling method,CARS)对特征波长进行提取,构建卷积神经网络模型,预测樟子松的气干密度;并与偏最小二乘回归(partial least squares regression,PLSR)、支持向量机(support vector regression,SVR)和BPNN(backpropagation network)神经网络的预测结果进行对比。结果表明,当校正集比例小于0.65时,模型预测结果略低于PLSR模型。但当校正集比例大于0.7时,卷积神经网络(convolution neural network,CNN)模型的预测精度优于其他模型,且随着训练样本比例的增加,模型的性能和稳定性也随之提升。研究表明CNN可以显著提高近红外预测木材气干密度的模型精度,实现基于近红外技术的木材密度有效预测。为木材气干密度无损检测提供了理论基础和科学依据。
关键词
木材气干密度
近红外光谱
卷积神经网络
樟子松
:
预测
模型
Keywords
Wood air-dry density
near-infrared spectroscopy
convolutional neural network
Pinus sylvestris
prediction model
分类号
S781.31 [农业科学—木材科学与技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于卷积神经网络的樟子松木材密度近红外预测模型优化
刘晓利
李耀翔
彭润东
张哲宇
陈雅
《森林工程》
北大核心
2024
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部