The simulation model of the E car HS2000 including the permanent magnetic direct current motor with the augment magnet winding is constructed based on tests in order to simulate the synthetic performance of the elec...The simulation model of the E car HS2000 including the permanent magnetic direct current motor with the augment magnet winding is constructed based on tests in order to simulate the synthetic performance of the electric car. The performance of E car HS2000 is analyzed by means of modeling and programming according to data acquired during tests. The simulation results show that the performance of E car HS2000 is successfully predicted and the model and the corresponding simulation software are feasible for simulating E cars. They can be used as effective tools for analyzing the performance parameters as well as specifications of E cars during prototype stage.展开更多
Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation ...Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.展开更多
Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. Th...Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. The method studies the sys tem characteristics near the equilibrium manifold. The modeling method can be realized through dynamic and static twostep, and for the specific parameter modeling steps and algorithm are given. The output of the test data is compared with the model output through numerical simulation, to check the model with an additional set of test data. The simulation results show that the model has reached the requirements of engineering accuracy.展开更多
Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplif...Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.展开更多
A discrete-event system simulation and animation program was developed to enhance the efficiency of a truck-excavator operation and reduce the environmental impact of haulage in an open-cut coal mine with multiple-pit...A discrete-event system simulation and animation program was developed to enhance the efficiency of a truck-excavator operation and reduce the environmental impact of haulage in an open-cut coal mine with multiple-pit operations. In any mine, a key objective is to have sufficient equipment for production and not to have excess to where it becomes counterproductive. Due to the advent of responsible mining,environmental regulations, and eco-friendly practices, these factors must also be considered in the analysis. Simulation studies can be financially advantageous for both the optimization of existing mine operations and new development phases in a mine. This study is a new approach to use discrete-event system simulation for mine systems, in order to investigate and possibly reduce environmental impact considering mining haulage performance and production target. A hypothetical layout of a surface coal mine with two pit operations was used for the simulation and animation model. The simulation model includes the animation of the operation. Animation is helpful to enhance the benefit of a mine simulation model. GPSS/Hòand Proof Professionalòwere the software used for the investigation.展开更多
A disorder situation of traffic operation always appears in on-ramp junction area of urban freeway,because the operation action for vehicles presents the weaving condition,especially for different vehicle types.Based ...A disorder situation of traffic operation always appears in on-ramp junction area of urban freeway,because the operation action for vehicles presents the weaving condition,especially for different vehicle types.Based on the analysis on the cellular automata theory,and combining with on-site survey data,several key parameters were defined,namely,cellular length,cellular speed,cellular acceleration,updating time interval.In addition,cellular acceleration rule,cellular deceleration rule,random rule,lane-changing rule and other micro-simulation rules were set,and cellular automaton micro-simulation model was set up.Further-more,a micro-simulation module was developed for traffic operation actions of on-ramp junction with Matlab toolbox.Finally,a simulation experiment for traffic operation reliability was done with this micro-simulation module,and the situation of change for on-ramp junction area was obtained under the conditions of different mainline design speed,acceleration lane length,vehicle generation probability and lane-changing probability.The results show that operation reliability for on-ramp junction is determined by the parameters of the probability of vehicle generation and the length of acceleration lane,especially for on-ramp.展开更多
The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimensio...The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimension and laminar flame surface area of turbulent premixed flames were studied under different working conditions. The experimental system mainly includes an optical engine and a set of photography equipment used to shoot the images of turbulent flame of spark-ignition engine. The difference box-counting method was used to process 2D combustion images. In contrast to the experimental results, the computational results show that the fractal combustion model is an effective method of simulating the engine combustion process. The study provides a better understanding for flame structure and its propagation.展开更多
Spike neural networks are inspired by animal brains,and outperform traditional neural networks on complicated tasks.However,spike neural networks are usually used on a large scale,and they cannot be computed on commer...Spike neural networks are inspired by animal brains,and outperform traditional neural networks on complicated tasks.However,spike neural networks are usually used on a large scale,and they cannot be computed on commercial,off-the-shelf computers.A parallel architecture is proposed and developed for discrete-event simulations of spike neural networks.Furthermore,mechanisms for both parallelism degree estimation and dynamic load balance are emphasized with theoretical and computational analysis.Simulation results show the effectiveness of the proposed parallelized spike neural network system and its corresponding support components.展开更多
The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model ...The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model to study the operating performance of the induction motor system.This model consists of non-linear time varying electromagnetic field equations,mechanical wave equations of sucker rods and non-linear coupling equation of reducer and four-bar linkage.The equations are numerically solved by combining time-step finite element method(TS-FEM),finite difference method(FDM),a linear dimension reduction method and the Newton-Raphson method.Simulation results,which are validated by experiments,reveal the influence of the fluctuating potential load on magnetic field distributions,stator and rotor currents,the input power and the power factor.The model and simulation results provide theoretical and technical supports for subsequent researches on model simplification and energy saving technologies.展开更多
As multistage gear transmission systems are complex and precise, the flexibility of shaft can influence the dynamic response of system. In order to study dynamic response of the system, we build the rigid model of gea...As multistage gear transmission systems are complex and precise, the flexibility of shaft can influence the dynamic response of system. In order to study dynamic response of the system, we build the rigid model of gear system and the finite element model of the gear shaft. virtual prototype technology, and a contrast between rigid The rigid-flex coupling model is established with the model and rigid-flex coupling model is constructed. With these methods, the dynamic responses with different rotation speeds and different loading magnitudes are examined. We also analyze the influence of shaft flexibility, rotation speeds and loading magnitudes on the vibration characteristics of gear transmission systems.展开更多
文摘The simulation model of the E car HS2000 including the permanent magnetic direct current motor with the augment magnet winding is constructed based on tests in order to simulate the synthetic performance of the electric car. The performance of E car HS2000 is analyzed by means of modeling and programming according to data acquired during tests. The simulation results show that the performance of E car HS2000 is successfully predicted and the model and the corresponding simulation software are feasible for simulating E cars. They can be used as effective tools for analyzing the performance parameters as well as specifications of E cars during prototype stage.
基金Supported by Supported by National High Technology Research and Development Program of China(2006AA10A039)Special Funding Projects for Research in Agricultural Public Service Sectors (200803037)Technology Development Program of Jilin Province (2006BAD02A10-6-6)~~
文摘Dynamic simulation system of maize growth is developed by the physiological and ecological model,morphological structure model,computer science and virtual reality technology,to improve the level of precise operation of maize production.The computer graphics algorithms,virtual reality technology,animation design and information integration technology are applied to maize production by this system.establishment of dynamic simulation system of maize growth is conducive to raise level of precise operation in maize production.The system also can assist the relevant production research and testing,to reduce cost and improve efficiency.
文摘Because the normal operation of the engine is located near the equilibrium manifold, the method of equilibrium mani fold nonlinear dynamic modeling is adopted for turbofan engine more than the local train modeling. The method studies the sys tem characteristics near the equilibrium manifold. The modeling method can be realized through dynamic and static twostep, and for the specific parameter modeling steps and algorithm are given. The output of the test data is compared with the model output through numerical simulation, to check the model with an additional set of test data. The simulation results show that the model has reached the requirements of engineering accuracy.
基金Project(11672127)supported by the National Natural Science Foundation of ChinaProject(NHAl3002)supported by the Major Exploration Project of the General Armaments Department of China+1 种基金Project(KYCX17_0240)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,ChinaProjects(NP2016412,NP2018403,NT2018002)supported by the Fundamental Research Funds for the Central Universities,China
文摘Aiming at the issue of yaw and rollover stability control for off-road vehicles with non-pneumatic mechanical elastic wheel(MEW),an integrated control system based on fuzzy differential braking is developed.By simplifying the structure of the MEW,a corresponding fitting brush tire model is constructed and its longitudinal and lateral tire force expressions are set up,respectively.Then,a nonlinear vehicle simulation model with MEW is established to validate the proposed control scheme based on Carsim.The designed yaw and rollover control system is a two-level structure with the upper additional moment controller,which utilizes a predictive load transfer ratio(PLTR)as the rollover index.In order to design the upper integrated control algorithm,fuzzy proportional-integral-derivative(PID)is adopted to coordinate the yaw and rollover control,simultaneously.And the lower control allocator realizes the additional moment to the vehicle by differential braking.Finally,a Carsim-simulink co-simulation model is constructed,and simulation results show that the integrated control system could improve the vehicle yaw and roll stability,and prevent rollover happening.
文摘A discrete-event system simulation and animation program was developed to enhance the efficiency of a truck-excavator operation and reduce the environmental impact of haulage in an open-cut coal mine with multiple-pit operations. In any mine, a key objective is to have sufficient equipment for production and not to have excess to where it becomes counterproductive. Due to the advent of responsible mining,environmental regulations, and eco-friendly practices, these factors must also be considered in the analysis. Simulation studies can be financially advantageous for both the optimization of existing mine operations and new development phases in a mine. This study is a new approach to use discrete-event system simulation for mine systems, in order to investigate and possibly reduce environmental impact considering mining haulage performance and production target. A hypothetical layout of a surface coal mine with two pit operations was used for the simulation and animation model. The simulation model includes the animation of the operation. Animation is helpful to enhance the benefit of a mine simulation model. GPSS/Hòand Proof Professionalòwere the software used for the investigation.
基金Project(HIT.NSRIF.2009102) supported by the Fundamental Research Funds for the Central Universities in ChinaProject(11541295) supported by the Scientific Research Fund of Heilongjiang Provincial Education Department of ChinaProject(20100471029) supported by China Postdoctoral Science Foundation
文摘A disorder situation of traffic operation always appears in on-ramp junction area of urban freeway,because the operation action for vehicles presents the weaving condition,especially for different vehicle types.Based on the analysis on the cellular automata theory,and combining with on-site survey data,several key parameters were defined,namely,cellular length,cellular speed,cellular acceleration,updating time interval.In addition,cellular acceleration rule,cellular deceleration rule,random rule,lane-changing rule and other micro-simulation rules were set,and cellular automaton micro-simulation model was set up.Further-more,a micro-simulation module was developed for traffic operation actions of on-ramp junction with Matlab toolbox.Finally,a simulation experiment for traffic operation reliability was done with this micro-simulation module,and the situation of change for on-ramp junction area was obtained under the conditions of different mainline design speed,acceleration lane length,vehicle generation probability and lane-changing probability.The results show that operation reliability for on-ramp junction is determined by the parameters of the probability of vehicle generation and the length of acceleration lane,especially for on-ramp.
基金Supported by National Natural Science Foundation of China (No. 50876072) Tianjin Municipal Science and Technology Commission (No. 07JCYBJC03900 )
文摘The flame structure of gasoline engine is complicated and has the characteristic of fractal geometry. A fractal combustion model was used to simulate the engine working cycle. Based on this model, the fractal dimension and laminar flame surface area of turbulent premixed flames were studied under different working conditions. The experimental system mainly includes an optical engine and a set of photography equipment used to shoot the images of turbulent flame of spark-ignition engine. The difference box-counting method was used to process 2D combustion images. In contrast to the experimental results, the computational results show that the fractal combustion model is an effective method of simulating the engine combustion process. The study provides a better understanding for flame structure and its propagation.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61003082,60921062,61005077)
文摘Spike neural networks are inspired by animal brains,and outperform traditional neural networks on complicated tasks.However,spike neural networks are usually used on a large scale,and they cannot be computed on commercial,off-the-shelf computers.A parallel architecture is proposed and developed for discrete-event simulations of spike neural networks.Furthermore,mechanisms for both parallelism degree estimation and dynamic load balance are emphasized with theoretical and computational analysis.Simulation results show the effectiveness of the proposed parallelized spike neural network system and its corresponding support components.
基金supported by the National Natural Science Foundation of China(Grant No.51307050)
文摘The induction motor system with fluctuating potential loads is a non-linear complex electro-mechanical system.With beam pumping motors as an example,this paper proposes a multiple factor non-linear mathematical model to study the operating performance of the induction motor system.This model consists of non-linear time varying electromagnetic field equations,mechanical wave equations of sucker rods and non-linear coupling equation of reducer and four-bar linkage.The equations are numerically solved by combining time-step finite element method(TS-FEM),finite difference method(FDM),a linear dimension reduction method and the Newton-Raphson method.Simulation results,which are validated by experiments,reveal the influence of the fluctuating potential load on magnetic field distributions,stator and rotor currents,the input power and the power factor.The model and simulation results provide theoretical and technical supports for subsequent researches on model simplification and energy saving technologies.
基金the National Natural Science Foundation of China(No.71401173)
文摘As multistage gear transmission systems are complex and precise, the flexibility of shaft can influence the dynamic response of system. In order to study dynamic response of the system, we build the rigid model of gear system and the finite element model of the gear shaft. virtual prototype technology, and a contrast between rigid The rigid-flex coupling model is established with the model and rigid-flex coupling model is constructed. With these methods, the dynamic responses with different rotation speeds and different loading magnitudes are examined. We also analyze the influence of shaft flexibility, rotation speeds and loading magnitudes on the vibration characteristics of gear transmission systems.