Non-equal channel lateral extrusion(NECLE) is a new process that can be used to attain higher grain refinement in comparison with equal channel lateral extrusion(ECLE). The die design for this process was numerica...Non-equal channel lateral extrusion(NECLE) is a new process that can be used to attain higher grain refinement in comparison with equal channel lateral extrusion(ECLE). The die design for this process was numerically and experimentally studied. After finding a good correlation between the numerical and experimental results, more comprehensive FE analyses were carried out. Different die geometrical parameters were considered and their effects on the induced plastic strain, stress distribution, velocity field and forming load of the process were investigated. It was found that by this process with a suitable set of die geometrical parameters, higher induced effective strain and more homogeneous strain distribution could be achieved in comparison with ECLE operation.展开更多
The effect of die inlet and transition geometry on the extrusion loads and ~aaterial flow for extrusion of clover sections were investigated and presented both theoretically and experimentally. For this purpose, four ...The effect of die inlet and transition geometry on the extrusion loads and ~aaterial flow for extrusion of clover sections were investigated and presented both theoretically and experimentally. For this purpose, four different die geometries including straight tapered and cosine transition profile and each of them having round and clover inlet geometries were chosen. In the experimental study, commercially pure lead was used because of its hot forming characteristic at room temperature. A newly kinematical admissible velocity field to analyze different profiles of extrusion dies of clover section from round bars was proposed by upper bound analysis. It is clear that the extrusion loads obtained from the theoretical analysis for various die inlet-die transition geometry combinations are in good agreement with the experimental results. Axis deviations of the parts which define the dimensional quality of the products were also investigated.展开更多
By using the rigid-visco-plasticity finite element method, the welding process of aluminum porthole die extrusion to form a tube was simulated based on Deform-3D software. The welding chamber height (H), back dimens...By using the rigid-visco-plasticity finite element method, the welding process of aluminum porthole die extrusion to form a tube was simulated based on Deform-3D software. The welding chamber height (H), back dimension of die leg (D), process velocity and initial billet temperature were used in FE simulations so as to determine the conditions in which better longitudinal welding quality can be obtained. According to K criterion, the local welding parameters such as welding pressure, effective stress and welding path length on the welding plane are linked to longitudinal welds quality. Simulation turns out that pressure-to-effective stress ratio (ρ/σ) and welding path length (L) are the key factors affecting the welding quality, Higher welding chamber best and sharper die leg give better welding quality. When H=10 mm and D=0.4 mm, the longitudinal welds have the best quality. Higher process velocity decreases welds quality. The proper velocity is 10 mm/s for this simulation. In a certain range, higher temperature is beneficial to the longitudinal welds. It is found that both 450 and 465℃ can satisfy the requirements of the longitudinal welds.展开更多
文摘Non-equal channel lateral extrusion(NECLE) is a new process that can be used to attain higher grain refinement in comparison with equal channel lateral extrusion(ECLE). The die design for this process was numerically and experimentally studied. After finding a good correlation between the numerical and experimental results, more comprehensive FE analyses were carried out. Different die geometrical parameters were considered and their effects on the induced plastic strain, stress distribution, velocity field and forming load of the process were investigated. It was found that by this process with a suitable set of die geometrical parameters, higher induced effective strain and more homogeneous strain distribution could be achieved in comparison with ECLE operation.
文摘The effect of die inlet and transition geometry on the extrusion loads and ~aaterial flow for extrusion of clover sections were investigated and presented both theoretically and experimentally. For this purpose, four different die geometries including straight tapered and cosine transition profile and each of them having round and clover inlet geometries were chosen. In the experimental study, commercially pure lead was used because of its hot forming characteristic at room temperature. A newly kinematical admissible velocity field to analyze different profiles of extrusion dies of clover section from round bars was proposed by upper bound analysis. It is clear that the extrusion loads obtained from the theoretical analysis for various die inlet-die transition geometry combinations are in good agreement with the experimental results. Axis deviations of the parts which define the dimensional quality of the products were also investigated.
基金Project(2007BAE38BO4) supported by the National Science and Technology Pillar Program
文摘By using the rigid-visco-plasticity finite element method, the welding process of aluminum porthole die extrusion to form a tube was simulated based on Deform-3D software. The welding chamber height (H), back dimension of die leg (D), process velocity and initial billet temperature were used in FE simulations so as to determine the conditions in which better longitudinal welding quality can be obtained. According to K criterion, the local welding parameters such as welding pressure, effective stress and welding path length on the welding plane are linked to longitudinal welds quality. Simulation turns out that pressure-to-effective stress ratio (ρ/σ) and welding path length (L) are the key factors affecting the welding quality, Higher welding chamber best and sharper die leg give better welding quality. When H=10 mm and D=0.4 mm, the longitudinal welds have the best quality. Higher process velocity decreases welds quality. The proper velocity is 10 mm/s for this simulation. In a certain range, higher temperature is beneficial to the longitudinal welds. It is found that both 450 and 465℃ can satisfy the requirements of the longitudinal welds.