In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns...In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.展开更多
High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,tempe...High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range.展开更多
The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by bind...The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.展开更多
In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump ...In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump intensity was introduced to the existing discrete microstructure model to denote large price fluctuations. The nonparametric method of LEE was used for detecting jumps. Further, the extended Kalman filter and the maximum likelihood method were applied to discrete microstructure modeling and the estimation of two market potential variables: market excess demand and liquidity. At last, based on the estimated variables, an assets allocation strategy using evolutionary algorithm was designed to control the weight of each asset dynamically. Case studies on IBM Stock show that jumps with variable intensity are detected successfully, and the assets allocation strategy may effectively keep the total assets growth or prevent assets loss at the stochastic financial market.展开更多
Galileo mission detected the magnetic anomalies originated from Galilean moons.These anomalies are likely generated in the moons' interiors,under the influence of a strong ambient Jovian field.Among various possib...Galileo mission detected the magnetic anomalies originated from Galilean moons.These anomalies are likely generated in the moons' interiors,under the influence of a strong ambient Jovian field.Among various possible generation mechanisms of the anomalies,we focus on magneto-convection and dynamos in the interiors via numerical simulation.To mimic the electromagnetic environment of the moons,we introduce in our numerical model an external uniform magnetic field B0 with a fixed orientation but varying field strength.Our results show that a finite B0 can substantially alter the dynamo processes inside the core.When the ambient field strength B0 increases to approximately 40% of the field generated by the pure dynamo action,the convective state in the core changes significantly:the convective flow decreases by 80% in magnitude,but the differential rotation becomes stronger in much of the fluid layer,leading to a stronger field generated in the core.The field morphologies inside the core tend to align with the ambient field,while the flow patterns show the symmetry-breaking effect under the influence of B0.Furthermore,the generated field tends to be temporally more stable.展开更多
A novel magnetic field sensor based on optical fiber Mach-Zehnder interferometer(MZI) coated by magnetic fluid(MF) is proposed. The MZI consists of two spherical structures formed on standard single mode fiber(SMF). T...A novel magnetic field sensor based on optical fiber Mach-Zehnder interferometer(MZI) coated by magnetic fluid(MF) is proposed. The MZI consists of two spherical structures formed on standard single mode fiber(SMF). The interference wavelength and the power of the sensing structure are sensitive to the external refractive index(RI). Since RI of the MF is sensitive to the magnetic field, the magnetic field measurement can be realized by detecting the variation of the interference spectrum. Experimental results show that the wavelength and the power of interference dip both increase with the increase of magnetic field intensity.展开更多
An all fiber magnetic field sensor with peanut-shape structure based on multimode fiber(MMF) is proposed and experimentally demonstrated. The sensing structure and magnetic fluid(MF) are both encapsulated in capillary...An all fiber magnetic field sensor with peanut-shape structure based on multimode fiber(MMF) is proposed and experimentally demonstrated. The sensing structure and magnetic fluid(MF) are both encapsulated in capillary, and the effective refractive index of MF is affected by surrounding magnetic field strength. The measurement of magnetic field is realized by observing the wavelength drift of interference peak. The transmission spectrum generated by Mach-Zehnder interferometer(MZI) includes core-core mode interference and core-cladding mode interference. Experimental results demonstrate that the core-cladding mode interference is sensitive to magnetic field, and the magnetic field sensitivity is 0.047 8 nm/mT. In addition, two kinds of interference dips are sensitive to temperature, and the sensitivities are 0.060 0 nm/°C and 0.052 6 nm/°C, respectively. So the simultaneous measurement of magnetic field strength and temperature can be achieved based on sensitivity matrix.展开更多
基金The Key Project of Science and Technology of Ministryof Education (No.105085)the Specialized Research Fund of Science andTechnology Production Translation of Jiangsu Province (No.BA2006068).
文摘In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.
基金Project(11174077)supported by the National Natural Science Foundation of ChinaProject(11JJ3079)supported by the Hunan Provincial Natural Science Foundation of ChinaProjects(12C0237,11C0844)supported by the Science Research Program of Education Department of Hunan Province,China
文摘High intensity focused ultrasound(HIFU)therapy is an effective method in clinical treatment of tumors,in order to explore the bio-heat conduction mechanism of in multi-layer media by concave spherical transducer,temperature field induced by this kind of transducer in multi-layer media will be simulated through solving Pennes equation with finite difference method,and the influence of initial sound pressure,absorption coefficient,and thickness of different layers of biological tissue as well as thermal conductivity parameter on sound focus and temperature distribution will be analyzed,respectively.The results show that the temperature in focus area increases faster while the initial sound pressure and thermal conductivity increase.The absorption coefficient is smaller,the ultrasound intensity in the focus area is bigger,and the size of the focus area is increasing.When the thicknesses of different layers of tissue change,the focus position changes slightly,but the sound intensity of the focus area will change obviously.The temperature in focus area will rise quickly before reaching a threshold,and then the temperature will keep in the threshold range.
文摘The present paper discusses the effects of small plants on the dump mass reinforcement and slope stability.The roots of smaller plants(such as grasses and shrubs)do not go deep.However,they stabilize the slope by binding the upper layer of dump slope.Shear strength of the dump mass with and without root reinforcement is determined by laboratory shear box instrument.The increased cohesion(apparent cohesion)of upper layer of the dump mass due to plants is determined by fabricated shear box.The kinetic behavior of the dump has been investigated using the FLAC software.The factor of safety has been calculated in order to determine the possible effect of small plants on the stability of the dump slope.It is observed that the small plants do not significantly improve the factor of safety(FOS)of slope.However,it could be useful for early stabilization.The grasses quickly bind the upper surface,whereas shrubs too immensely strengthen the stability of the dump in the initial stage.
基金Projects(71271215,71221061) supported by the National Natural Science Foundation of ChinaProject(2011DFA10440) supported by the International Science&Technology Cooperation Program of ChinaProject(CX2012B067) supported by Hunan Provincial Innovation Foundation for Postgraduate,China
文摘In order to characterizc large fluctuations of the financial markets and optimize financial portfolio, a new dynamic asset control strategy was proposed in this work. Firstly, a random process item with variable jump intensity was introduced to the existing discrete microstructure model to denote large price fluctuations. The nonparametric method of LEE was used for detecting jumps. Further, the extended Kalman filter and the maximum likelihood method were applied to discrete microstructure modeling and the estimation of two market potential variables: market excess demand and liquidity. At last, based on the estimated variables, an assets allocation strategy using evolutionary algorithm was designed to control the weight of each asset dynamically. Case studies on IBM Stock show that jumps with variable intensity are detected successfully, and the assets allocation strategy may effectively keep the total assets growth or prevent assets loss at the stochastic financial market.
基金supported by National Natural Science Foundation of China (Grant No. 40328006)
文摘Galileo mission detected the magnetic anomalies originated from Galilean moons.These anomalies are likely generated in the moons' interiors,under the influence of a strong ambient Jovian field.Among various possible generation mechanisms of the anomalies,we focus on magneto-convection and dynamos in the interiors via numerical simulation.To mimic the electromagnetic environment of the moons,we introduce in our numerical model an external uniform magnetic field B0 with a fixed orientation but varying field strength.Our results show that a finite B0 can substantially alter the dynamo processes inside the core.When the ambient field strength B0 increases to approximately 40% of the field generated by the pure dynamo action,the convective state in the core changes significantly:the convective flow decreases by 80% in magnitude,but the differential rotation becomes stronger in much of the fluid layer,leading to a stronger field generated in the core.The field morphologies inside the core tend to align with the ambient field,while the flow patterns show the symmetry-breaking effect under the influence of B0.Furthermore,the generated field tends to be temporally more stable.
基金supported by the National Training Programs of Innovation and Entrepreneurship for Undergraduates of China(No.201310060015)Education Program(No.YB11-32)
文摘A novel magnetic field sensor based on optical fiber Mach-Zehnder interferometer(MZI) coated by magnetic fluid(MF) is proposed. The MZI consists of two spherical structures formed on standard single mode fiber(SMF). The interference wavelength and the power of the sensing structure are sensitive to the external refractive index(RI). Since RI of the MF is sensitive to the magnetic field, the magnetic field measurement can be realized by detecting the variation of the interference spectrum. Experimental results show that the wavelength and the power of interference dip both increase with the increase of magnetic field intensity.
基金supported by the National High Technology Research and Development Program of China(No.2013AA014200)the National Natural Science Foundation of China(No.11444001)the Municipal Natural Science Foundation of Tianjin(No.14JCYBJC16500)
文摘An all fiber magnetic field sensor with peanut-shape structure based on multimode fiber(MMF) is proposed and experimentally demonstrated. The sensing structure and magnetic fluid(MF) are both encapsulated in capillary, and the effective refractive index of MF is affected by surrounding magnetic field strength. The measurement of magnetic field is realized by observing the wavelength drift of interference peak. The transmission spectrum generated by Mach-Zehnder interferometer(MZI) includes core-core mode interference and core-cladding mode interference. Experimental results demonstrate that the core-cladding mode interference is sensitive to magnetic field, and the magnetic field sensitivity is 0.047 8 nm/mT. In addition, two kinds of interference dips are sensitive to temperature, and the sensitivities are 0.060 0 nm/°C and 0.052 6 nm/°C, respectively. So the simultaneous measurement of magnetic field strength and temperature can be achieved based on sensitivity matrix.