期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
改进的模块2DPCA与MSD结合的人脸识别 被引量:2
1
作者 孔爱祥 王成儒 《计算机工程与应用》 CSCD 2014年第2期175-178,197,共5页
提出了一种改进的模块2DPCA与最大散度差鉴别分析相结合的人脸识别方法。该方法先对原始人脸图像采用改进的模块2DPCA抽取特征,然后对得到的特征图像的子图像块施行最大散度差鉴别分析,得到最终的特征图像。该方法不仅利用了原始图像的... 提出了一种改进的模块2DPCA与最大散度差鉴别分析相结合的人脸识别方法。该方法先对原始人脸图像采用改进的模块2DPCA抽取特征,然后对得到的特征图像的子图像块施行最大散度差鉴别分析,得到最终的特征图像。该方法不仅利用了原始图像的局部特征和类别信息,而且完全避免了使用矩阵的奇异值分解。在ORL人脸库上的实验结果验证了该方法的有效性。 展开更多
关键词 模块成分分析(2dpca) 最大散度差鉴别分析 人脸识别
下载PDF
采用分段行-列核2DPCA的高光谱图像降维 被引量:4
2
作者 向英杰 杨桄 +1 位作者 张俭峰 王琪 《红外技术》 CSCD 北大核心 2017年第12期1107-1113,共7页
二维主成分方法计算时间少,降维效果好,被成功应用到高光谱图像降维中。基于二维主成分方法,为挖掘高光谱图像的非线性信息,实现了分段行-列核2DPCA方法的降维,并对比分析了行-列2DPCA方法、分段行-列2DPCA方法和行-列核2DPCA方法的降... 二维主成分方法计算时间少,降维效果好,被成功应用到高光谱图像降维中。基于二维主成分方法,为挖掘高光谱图像的非线性信息,实现了分段行-列核2DPCA方法的降维,并对比分析了行-列2DPCA方法、分段行-列2DPCA方法和行-列核2DPCA方法的降维效果。利用相关性将高光谱图像划分为5个子空间,通过转换数据结构来实现行和列的核2DPCA变换,最后将行和列结果进行融合得到降维结果。降维结果表明,在较高信息保持率情况下,分段行-列核2DPCA方法具有最高的图像清晰度和边缘强度。不同地物像元像素折线图表明,分段行-列核2DPCA方法能更好地区分不同地物,可以很好地应用于地物分类和目标识别。 展开更多
关键词 成分分析 分段行-列2dpca 高光谱图像 数据模型转换
下载PDF
基于MMP-2DPCA的人脸识别方法 被引量:1
3
作者 侯建华 牟海军 +1 位作者 罗艳 江小平 《中南民族大学学报(自然科学版)》 CAS 2013年第1期70-74,79,共6页
提出了一种基于二维小波分解和融合多特征的2DPCA(简称MMP-2DPCA)人脸识别方法.该方法对于人脸表情变化不敏感,能够很好地压缩和表征原始人脸图像;融合图像既能反映人脸的全局特征,又能反映人脸的局部特征,具有更强的表达能力和判别能力... 提出了一种基于二维小波分解和融合多特征的2DPCA(简称MMP-2DPCA)人脸识别方法.该方法对于人脸表情变化不敏感,能够很好地压缩和表征原始人脸图像;融合图像既能反映人脸的全局特征,又能反映人脸的局部特征,具有更强的表达能力和判别能力.在ORL人脸库上的实验表明:MMP-2DPCA方法具有有效性. 展开更多
关键词 人脸识别 成分分析 mmP-2dpca方法 小波分解 特征提取
下载PDF
M2DPCA与CCLDA相结合的人脸识别
4
作者 冯华丽 刘渊 《计算机工程与应用》 CSCD 2014年第12期129-132,143,共5页
CCLDA算法将图像矩阵转化为向量进行处理,该算法易造成数据维数很大,计算量复杂并容易出现"小样本"等问题。针对以上这些问题,提出了一种基于模块化2DPCA和CCLDA相结合的协同处理方法并应用于人脸识别领域。并且在ORL和XM2VT... CCLDA算法将图像矩阵转化为向量进行处理,该算法易造成数据维数很大,计算量复杂并容易出现"小样本"等问题。针对以上这些问题,提出了一种基于模块化2DPCA和CCLDA相结合的协同处理方法并应用于人脸识别领域。并且在ORL和XM2VTS人脸库上的实验结果表明,新方法在识别效果上有比以往的算法更为明显的优势。 展开更多
关键词 上下文约束 模块成分分析(m2dpca) 基于上下文约束线性判别分析(CCLDA) 人脸识别
下载PDF
MEEMD特征掌纹的2DPCA识别方法
5
作者 颜廷秦 刘淑芬 《微电子学与计算机》 CSCD 北大核心 2011年第10期146-149,共4页
为了提高识别率,提出了基于MEEMD和2DPCA的掌纹识别方法.利用MEEMD技术对掌纹图像进行分解,得到本征模式函数(IMF)分量,用高频分量重构掌纹图像,形成掌纹识别图像集.然后利用2DPCA技术进行识别.MEEMD重构掌纹能够突出掌纹细节特征,提高... 为了提高识别率,提出了基于MEEMD和2DPCA的掌纹识别方法.利用MEEMD技术对掌纹图像进行分解,得到本征模式函数(IMF)分量,用高频分量重构掌纹图像,形成掌纹识别图像集.然后利用2DPCA技术进行识别.MEEMD重构掌纹能够突出掌纹细节特征,提高识别率.采用香港理工大学掌纹数据库进行实验,将此方法与不包含MEEMD的2DPCA方法进行比较,实验结果说明此方法有较高的识别率和较快的识别速度. 展开更多
关键词 集合经验模态分解(mEEmD) 成分分析(2dpca) 掌纹 本征模式函数(ImF)
下载PDF
图像特征抽取的MDNIB2DPCA方法 被引量:4
6
作者 万倬 朱嘉钢 陆晓 《计算机工程与应用》 CSCD 北大核心 2016年第9期177-183,共7页
在多方向二维主成分分析法MD2DPCA和无迭代双边二维主成分分析(NIB2DPCA)的基础上,提出了多方向无迭代双边二维主成分分析(MDNIB2DPCA)的特征抽取新方法。该方法可以对图像矩阵在多个方向上进行特征抽取,与MD2DPCA方法相比也提高了特征... 在多方向二维主成分分析法MD2DPCA和无迭代双边二维主成分分析(NIB2DPCA)的基础上,提出了多方向无迭代双边二维主成分分析(MDNIB2DPCA)的特征抽取新方法。该方法可以对图像矩阵在多个方向上进行特征抽取,与MD2DPCA方法相比也提高了特征抽取速度。在灰度人脸图像库上的对比实验表明,所提的方法可以提高灰度图像识别率两个百分点以上;进一步地,在基于NIB2DPCA的彩色图像识别方法的基础上,提出了将所提的MDNIB2DPCA替换NIB2DPCA的彩色图像处理的新方法。在彩色人脸库上的对比实验表明,所提方法的识别正确率也可提高约一个百分点。 展开更多
关键词 彩色人脸识别 成分分析法(2dpca) 多方向无迭代双边成分分析(mDNIB2dpca) 分数等级融合 特征抽取
下载PDF
一种M2DPCA和NSA相结合的人脸识别方法 被引量:1
7
作者 戴飞 陈秀宏 《计算机工程与应用》 CSCD 2012年第5期174-176,共3页
将非参数子空间分析方法(NSA)和模块化2DPCA方法相结合,提出了一种模块化2DPCA+NSA方法。NSA方法需将图像矩阵转化为向量后进行特征提取,导致数据维数很大,没有考虑到图像的局部特征,对图像矩阵进行分块,采用2DPCA进行特征提取,得到替... 将非参数子空间分析方法(NSA)和模块化2DPCA方法相结合,提出了一种模块化2DPCA+NSA方法。NSA方法需将图像矩阵转化为向量后进行特征提取,导致数据维数很大,没有考虑到图像的局部特征,对图像矩阵进行分块,采用2DPCA进行特征提取,得到替代原始图像的低维新模式,施行NSA。该法能有效提取图像的局部特征,而由于考虑到类内、类间的差异,可弥补PCA的缺陷。在ORL人脸库和XM2VTS人脸库上对LDA方法、NSA方法以及该方法分别进行了评价和测试,结果显示,所提方法在识别效果上优于LDA方法和NSA方法。 展开更多
关键词 模块成分分析法(m2dpca) 非参数子空间分析方法(NSA) 特征提取 人脸识别
下载PDF
基于F范数的二维主成分分析算法及焊缝表面缺陷识别研究
8
作者 方建雄 王肖锋 王成林 《光电子.激光》 CAS CSCD 北大核心 2023年第8期872-881,共10页
针对传统二维主成分分析(two-dimensional principal component analysis,2DPCA)算法应用于焊缝表面缺陷识别中存在重构性能及鲁棒性较弱等问题,本文将最大化投影距离和最小化重构误差引入到目标函数中,提出了一种基于F范数的非贪婪二... 针对传统二维主成分分析(two-dimensional principal component analysis,2DPCA)算法应用于焊缝表面缺陷识别中存在重构性能及鲁棒性较弱等问题,本文将最大化投影距离和最小化重构误差引入到目标函数中,提出了一种基于F范数的非贪婪二维主成分分析算法(non-greedy 2DPCA with F-norm,NG-2DPCA-F),该算法具有良好的鲁棒性和较低的重构误差。为了进一步提取图像的结构信息和求解出维数更小的特征矩阵,进而提出一种基于F范数的非贪婪双向二维主成分分析算法(non-greedy bilateral 2DPCA with F-norm,NG-B2DPCA-F)。最后,以含有不同噪声块的焊缝表面图像数据集进行实验,结果表明,本文所提算法在平均重构误差、重构图像与分类识别实验中均表现出良好的鲁棒性能。 展开更多
关键词 成分分析(2dpca) 焊缝表面缺陷 特征提取 缺陷识别
原文传递
基于样本扩充和改进2DPCA的单样本人脸识别 被引量:8
9
作者 赵雅英 谭延琪 马小虎 《计算机应用》 CSCD 北大核心 2011年第10期2728-2730,2756,共4页
针对大多数人脸识别方法在单个训练样本条件下识别性能下降的问题,提出了结合多种样本扩充方法和改进二维主成分分析(2DPCA)的人脸识别算法。通过分析各种样本扩充方法的优缺点,用多种样本扩充方法来生成虚拟样本,以充分利用单一样本所... 针对大多数人脸识别方法在单个训练样本条件下识别性能下降的问题,提出了结合多种样本扩充方法和改进二维主成分分析(2DPCA)的人脸识别算法。通过分析各种样本扩充方法的优缺点,用多种样本扩充方法来生成虚拟样本,以充分利用单一样本所提供的信息。采用改进的2DPCA方法对生成的虚拟样本进行特征提取,对训练样本进行分块,并用类内平均值规范后的分块来构造总体散布矩阵。在ORL和Yale人脸库上的实验表明,所提出的方法在识别性能方面优于普通的2DPCA方法,优于单一的样本扩充方法。 展开更多
关键词 单样本 人脸识别 样本扩充 类内平均值 成分分析(2dpca)
下载PDF
一种结合2DLPP与2DPCA的人脸识别方法 被引量:8
10
作者 齐永锋 火元莲 《西南交通大学学报》 EI CSCD 北大核心 2011年第6期910-916,共7页
为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而... 为解决二维局部保持投影(2DLPP)需要较多数据表示人脸特征的缺陷,提出了一种新的二维局部保持投影主成分分析方法(2DLPP-PCA).通过对人脸图像在行、列方向同时进行2DLPP和2DPCA投影,2DLPP-PCA不仅能减少保存人脸特征所需要的数据量,而且能有效地提取人脸的局部特征和全局特征.在ORL、Yale和CAS-PEAL-R1人脸数据库上的实验结果表明,2DLPP-PCA是一种高性能的特征提取方法,当训练样本数为6时,2DLPP-PCA在ORL数据库上的最佳平均识别率达到99%以上. 展开更多
关键词 局部保持投影(2DLPP) 成分分析(2dpca) 特征提取 人脸识别
下载PDF
基于分块小波变换和2DPCA的人脸特征提取与识别算法 被引量:4
11
作者 王玉德 赵焕利 薛乃玉 《红外与激光工程》 EI CSCD 北大核心 2012年第11期3118-3122,共5页
从最优化的角度出发,提出了一种基于分块小波变换和二维主成分分析法(2DPCA)的人脸特征提取与识别算法。该方法首先对人脸图像进行分块小波变换,并对各分块的高、低频分量进行组合处理,然后对小波系数特征应用2DPCA方法进行变换并将分... 从最优化的角度出发,提出了一种基于分块小波变换和二维主成分分析法(2DPCA)的人脸特征提取与识别算法。该方法首先对人脸图像进行分块小波变换,并对各分块的高、低频分量进行组合处理,然后对小波系数特征应用2DPCA方法进行变换并将分块特征进行融合得到人脸鉴别特征,最后在ORL人脸库上应用支持向量机(SVM)对该特征进行分类识别。试验结果表明,该算法能有效地提高人脸识别性能,具有较短的识别时间和较高的识别准确率,优于传统的人脸识别方法。 展开更多
关键词 特征提取与识别 分块小波变换 成分分析(2dpca) 支持向量机
下载PDF
基于分块2DPCA与2DLDA的单训练样本人脸识别 被引量:3
12
作者 覃磊 李德华 周康 《微电子学与计算机》 CSCD 北大核心 2015年第11期105-110,共6页
二维线性判别分析(2DLDA)在人脸识别已经获得巨大成功,然而用于单训练样本人脸识别问题方法失效,因为每类需要多个样本计算类内散度.对此提出了一种新的基于图像矩阵的分块二维主成分分析+二维线性判别分析(Block 2DPCA+2DLDA)的单训练... 二维线性判别分析(2DLDA)在人脸识别已经获得巨大成功,然而用于单训练样本人脸识别问题方法失效,因为每类需要多个样本计算类内散度.对此提出了一种新的基于图像矩阵的分块二维主成分分析+二维线性判别分析(Block 2DPCA+2DLDA)的单训练样本人脸识别算法.首先将图像进行分块,并按其位置将子图像分成多个样本集,在每个样本集上应用2DPCA算法,进行第一次识别.其次将第一次识别出的已知类别的测试样本并入原单训练样本集中,原单训练样本集成为多训练样本集.最后在新的训练样本集和测试集上应用2DLDA算法作为第二次识别,识别第一次未能识别出的图像.Block 2DPCA+2DLDA算法在ORL人脸数据库上被检测,实验结果表明Block 2DPCA+2DLDA识别结果优于PCA、2DPCA等算法. 展开更多
关键词 单训练样本 人脸识别 成分分析(2dpca) 线性判别分析(2DLDA)
下载PDF
二维类增广PCA及其在人脸识别中的应用 被引量:2
13
作者 徐毅 赵冬娟 梁久祯 《计算机工程与应用》 CSCD 2012年第1期202-204,共3页
提出了一种二维类增广PCA(2DCAPCA)的人脸识别算法。用二维PCA(2DPCA)方法直接对人脸图像矩阵进行特征提取,对提取的特征进行归一化处理,将归一化处理后的特征与类别信息结合构成类增广矩阵,对类增广矩阵进行2DPCA处理,提取图像的类增... 提出了一种二维类增广PCA(2DCAPCA)的人脸识别算法。用二维PCA(2DPCA)方法直接对人脸图像矩阵进行特征提取,对提取的特征进行归一化处理,将归一化处理后的特征与类别信息结合构成类增广矩阵,对类增广矩阵进行2DPCA处理,提取图像的类增广矩阵特征。由于该算法既保留了人脸图像的结构信息,又考虑了样本的类别信息,识别率有了较大的提高。通过Yale和FERET库上的实验表明,该方法对人脸识别是有效的。 展开更多
关键词 人脸识别 特征提取 成分分析(2dpca) 类增广成分分析(CAPCA) 类增广成分分析(2DCAPCA)
下载PDF
一种基于人脸垂直对称性的变形2DPCA算法 被引量:4
14
作者 曾岳 冯大政 《计算机工程与科学》 CSCD 北大核心 2011年第7期74-79,共6页
本文分析了人脸的对称性和主成分分析法(PCA)、二维主成分分析法(2DPCA)的特性,证明了2DPCA协方差矩阵就是PCA协方差矩阵的主角线的平均值,同时表明2DPCA减少了对人脸识别有用的协方差信息。提出了一种基于人脸垂直对称性的变形2DPCA算... 本文分析了人脸的对称性和主成分分析法(PCA)、二维主成分分析法(2DPCA)的特性,证明了2DPCA协方差矩阵就是PCA协方差矩阵的主角线的平均值,同时表明2DPCA减少了对人脸识别有用的协方差信息。提出了一种基于人脸垂直对称性的变形2DPCA算法(S2DPCA),该算法最大程度地利用了协方差鉴别信息,用更少的系数表示一张人脸图像。通过在ORL的实验比较表明,该算法与PCA算法相比降低了计算复杂性,与2DPCA方法和PCA方法相比提高了人脸识别率,在识别率方面优于传统算法(PCA(Eigenfaces)、ICA、Kernel Eigenfaces),同时也压缩了人脸的存储空间。 展开更多
关键词 成分分析法(PCA) 成分分析法(2dpca) 人脸识别 人脸表示
下载PDF
随机采样的2DPCA人脸识别方法 被引量:2
15
作者 朱玉莲 彭星 《小型微型计算机系统》 CSCD 北大核心 2011年第12期2461-2465,共5页
在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Y... 在2DPCA的基础上提出一种随机采样的2DPCA人脸识别方法--RRS-2DPCA.同传统通过对特征或投影向量进行采样的方法不同的是,RRS-2DPCA(Row Random Sampling 2DPCA)将随机采样建立于图像的行向量集中,然后在行向量子集中执行2DPCA.在ORL、Yale和AR人脸数据集上进行实验,结果表明RRS-2DPCA不仅具很好的识别性能和运算效率,而且对参数具有很大的稳定性.另外针对2DPCA和RRS-2DPCA对光线、遮挡等不鲁棒问题,进一步提出了局部区域随机采样的2DPCA方法LRRS-2DPCA(Local Row Random Sampling 2DPCA),将RRS-2DPCA执行在人脸图像的局部区域中.实验结果表明LRRS-2DPCA不仅具有较好的鲁棒性更大大的提高了RRS-2DPCA的识别性能. 展开更多
关键词 人脸识别 成分分析(2dpca) 局部区域 随机采样
下载PDF
一种基于半监督学习的2DPCA人脸识别方法 被引量:1
16
作者 李凯 徐治平 《河北大学学报(自然科学版)》 CAS 北大核心 2013年第4期413-419,共7页
结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监... 结合半监督学习中的自学习技术以及二维主成分分析(two-dimensional principal component analysis-2DPCA)方法,提出了一种基于半监督学习的人脸识别方法.在二维主成分分析的基础上,利用少量具有类别标签的样本训练分类器,然后利用半监督学习中的自学习技术,对未知类别标签的人脸样本进行分类,并将具有高置信度的人脸样本加入到训练集中,以此增加训练集中的人脸样本数量.在ORL人脸库和Yale人脸库的实验结果,表明了提出方法的有效性. 展开更多
关键词 人脸识别 半监督学习 成分分析法(2dpca) 特征提取
下载PDF
2DPCA+2DLDA和改进的LPP相结合的人脸识别算法 被引量:8
17
作者 李球球 杨恢先 +2 位作者 奉俊鹏 蔡勇勇 翟云龙 《计算机工程与应用》 CSCD 北大核心 2015年第21期199-204,共6页
针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行... 针对局部保持投影(LPP)算法无监督且只保留局部信息的特性,提出一种2DPCA+2DLDA和改进的LPP相结合的人脸识别算法。将训练集样本用2DPCA+2DLDA算法进行投影,保留数据整体空间信息和分类信息;引入类内、类间信息对LPP算法的关系矩阵进行优化,使LPP成为有监督的非线性学习方法,采用改进的LPP(ILPP)算法对训练集图像进行二次投影,提取样本的局部流形信息,并作为人脸识别信息进行鉴别。在Yale和ORL人脸库的测试结果验证了该方法的有效性。 展开更多
关键词 人脸识别 成分分析+线性判别分析(2dpca+2DLDA) 局部保持投影(LPP) 改进的局部保持投 影(1LPP) 局部流形信息
下载PDF
基于环形对称Gabor变换和2DPCA的人脸识别算法 被引量:6
18
作者 王娜 王汇源 《计算机工程与应用》 CSCD 北大核心 2015年第16期146-150,共5页
与传统Gabor小波变换相比,环形对称Gabor变换(CSGT)具有信息冗余度低和严格的旋转不变性的优点。提出了一种基于环形对称Gabor变换与2DPCA的人脸识别新算法,首先将所有人脸图像都变换到环形对称Gabor变换域,然后按照两种融合方案将不同... 与传统Gabor小波变换相比,环形对称Gabor变换(CSGT)具有信息冗余度低和严格的旋转不变性的优点。提出了一种基于环形对称Gabor变换与2DPCA的人脸识别新算法,首先将所有人脸图像都变换到环形对称Gabor变换域,然后按照两种融合方案将不同尺度的特征融合到一起,最后采用2DPCA方法进行特征提取和分类。在ORL人脸数据库上进行仿真实验并与传统的2DPCA、GT+2DPCA等方法做了对比,实验结果表明提出的算法不但取得了更好的识别效果,而且提高了识别速度。 展开更多
关键词 环形对称Gabor变换(CSGT) 成分分析(2dpca) 人脸识别
下载PDF
基于分块的2DPCA人脸识别方法
19
作者 李靖平 《浙江万里学院学报》 2014年第2期93-98,97,共6页
文章将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用。对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析... 文章将分块理论与2DPCA方法相结合,研究分块二维主成分分析法(M-2DPCA)在人脸识别中的应用。对人脸图像矩阵进行分块,用形成的子图像矩阵直接构造总体散布矩阵并求解对应的特征向量,利用提取的特征向量对图像进行特征的提取与分析,进行人脸识别。基于Yale人脸数据库的实验显示,在相同训练样本和特征向量条件下,M-2DPCA比2DPCA算法具有更高的识别率。结论 M-2DPCA充分利用了图像的协方差信息,在人脸识别方面具有较高的识别率和鲁棒性方面,对进一步研究人脸识别具有重要的意义。 展开更多
关键词 成分分析 分块成分分析 特征提取 人脸识别 TWO-DImENSIONAL Principal COmPONENT Analysis (2dpca)
下载PDF
基于局部特征自适应加权2DPCA提取表情特征
20
作者 莫莉敏 《科技信息》 2009年第33期68-69,共2页
本文提出了基于局部特征自适应加权2维主成分分析(2DPCA)表情识别方法。该方法采用分块来融合基于整体模板的分类方法和基于几何特征的分类方法,通过虚拟样本自适应地计算出不同特征对识别的不同贡献,并加权到分类器中。
关键词 人脸表情识别 表情特征提取 成分分析(PCA) 成分分析(2dpca)
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部