目的针对乳腺钼靶X线影像,将基于二维主成分分析(Two-Dimensional Principal ComponentAnalysis,2DPCA)的方法提取的图像特征用于乳腺感兴趣区域的自动提取,实现计算机辅助检测乳腺X线影像中微钙化点的前期预处理阶段。方法对乳腺图像...目的针对乳腺钼靶X线影像,将基于二维主成分分析(Two-Dimensional Principal ComponentAnalysis,2DPCA)的方法提取的图像特征用于乳腺感兴趣区域的自动提取,实现计算机辅助检测乳腺X线影像中微钙化点的前期预处理阶段。方法对乳腺图像进行预处理,通过改进的2DPCA方法提取乳腺图像特征,利用边缘检测算法对乳腺图像进行边缘特征提取,最后利用神经网络分类器提取乳腺感兴趣区域。结果实验结果表明该方法可以得到95%的阳性检出率。结论综合运用二维主成分分析方法、边缘特征提取方法和神经网络进行乳腺感兴趣区域提取,准确率更高。展开更多
文摘目的针对乳腺钼靶X线影像,将基于二维主成分分析(Two-Dimensional Principal ComponentAnalysis,2DPCA)的方法提取的图像特征用于乳腺感兴趣区域的自动提取,实现计算机辅助检测乳腺X线影像中微钙化点的前期预处理阶段。方法对乳腺图像进行预处理,通过改进的2DPCA方法提取乳腺图像特征,利用边缘检测算法对乳腺图像进行边缘特征提取,最后利用神经网络分类器提取乳腺感兴趣区域。结果实验结果表明该方法可以得到95%的阳性检出率。结论综合运用二维主成分分析方法、边缘特征提取方法和神经网络进行乳腺感兴趣区域提取,准确率更高。