介绍了模块化多电平换流器型直流输电系统(modularmultilevel converter based high voltage direct current system,MMC-HVDC)的起停控制策略。启动分为不控启动阶段和可控启动阶段,对不控启动阶段模块化多电平换流器(modularmultileve...介绍了模块化多电平换流器型直流输电系统(modularmultilevel converter based high voltage direct current system,MMC-HVDC)的起停控制策略。启动分为不控启动阶段和可控启动阶段,对不控启动阶段模块化多电平换流器(modularmultilevel converter,MMC)的等效电路进行数学建模,得出了限流电阻与最大充电电流之间的数学关系,为限流电阻的选取提供了理论基础。停机分为能量反馈阶段和放电阶段,能量反馈阶段将MMC各子模块电容存储的能量部分反馈回电网,充分利用了MMC子模块储能的优势,提高了能量的利用率。放电阶段,通过一定的触发方式,逐步将能量耗散掉,该方法有效地降低了放电电阻的功率、阻值和耐压水平。最后,对建立的两端有源网络的MMC-HVDC系统进行了数字仿真,仿真结果验证了该启停控制策略的有效性。展开更多
模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进...模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进展,首先介绍了MMC的拓扑电路及其工作原理,分析了其技术特点和应用领域,比较了其相对于传统2电平和3电平VSC拓扑的优势所在。然后分别从MMC的数学模型、调制策略、子模块电容均压、预充电、内部环流、控制方面、换流阀试验以及其在VSC-HVDC系统中的工程应用等方面,回顾了MMC目前在国内外的最新研究进展和工程应用现状,并指出了MMC自身的缺点和今后亟待研究的关键问题。已有的研究表明,MMC在电力系统中有着广阔的应用前景,是未来高压直流输电技术的一个重要发展方向。展开更多
作为柔性直流输电工程的连接单元,直流海底电缆的绝缘水平关系着输电工程的安全运行。以舟山多端柔性直流输电工程中定海换流站至岱山换流站的海底柔性直流电缆为研究对象,采用统计法仿真计算了模块化多电平换流器型柔性直流输电海缆过...作为柔性直流输电工程的连接单元,直流海底电缆的绝缘水平关系着输电工程的安全运行。以舟山多端柔性直流输电工程中定海换流站至岱山换流站的海底柔性直流电缆为研究对象,采用统计法仿真计算了模块化多电平换流器型柔性直流输电海缆过电压分布规律,得出柔性直流海缆的绝缘水平。通过仿真计算,得出了直流电缆的故障过电压最大值,即导体对铅套、铅套对铠装和铠装对地的最大过电压分别为403.44 k V、6.72 k V和0.39k V;选取30%的绝缘裕度,确定了直流电缆的绝缘水平,即导体对铅套为525 k V、铅套对铠装为9 k V和铠装对地为0.6 k V。计算结果可为柔性直流电缆的选型及试验提供重要参考。展开更多
针对模块化多电平换流器型高压直流输电系统(modular multilevel converter based high-voltage direct current,MMC-HVDC),为了确保停运过程中子模块电容能够可靠且快速地放电,提出一套完整的停运控制策略。根据作用机理的不同,停运过...针对模块化多电平换流器型高压直流输电系统(modular multilevel converter based high-voltage direct current,MMC-HVDC),为了确保停运过程中子模块电容能够可靠且快速地放电,提出一套完整的停运控制策略。根据作用机理的不同,停运过程被划分为能量反馈阶段、可控能量耗散阶段和不可控能量耗散阶段。在能量反馈阶段中,通过提高调制比m,三次谐波注入,调节换流变压器变比及冗余子模块的投入,降低子模块电容电压,最大程度地将电容中的储存能量反馈至电网。在可控能量耗散阶段,子模块电容通过直流线路或者启动电阻进行放电,避免了放电电阻的使用。在不可控能量耗散阶段,子模块电容仅通过子模块电阻进行放电。最后,基于时域仿真软件PSCAD/EMTDC下搭建的400 MW/±200 kV数字仿真模型,验证所提出方法的有效性。展开更多
为了解决现有电网换相换流器(LCC)与模块化多电平换流器(MMC)组成的混合高压直流(HVDC)输电系统采用半桥MMC时不具有直流侧故障清除能力、采用全桥MMC时成本过高的问题,提出了一种使用新型的电流单向型MMC与LCC连接构成的混合直...为了解决现有电网换相换流器(LCC)与模块化多电平换流器(MMC)组成的混合高压直流(HVDC)输电系统采用半桥MMC时不具有直流侧故障清除能力、采用全桥MMC时成本过高的问题,提出了一种使用新型的电流单向型MMC与LCC连接构成的混合直流输电系统。构建了单极800 k V/2 500 MW的双端系统模型,对其启动过程、典型故障过程和功率反转过程进行了仿真,结果表明提出的混合系统具有可行性、直流故障清除能力、短时无功支撑能力和双向功率传输能力。展开更多
文摘介绍了模块化多电平换流器型直流输电系统(modularmultilevel converter based high voltage direct current system,MMC-HVDC)的起停控制策略。启动分为不控启动阶段和可控启动阶段,对不控启动阶段模块化多电平换流器(modularmultilevel converter,MMC)的等效电路进行数学建模,得出了限流电阻与最大充电电流之间的数学关系,为限流电阻的选取提供了理论基础。停机分为能量反馈阶段和放电阶段,能量反馈阶段将MMC各子模块电容存储的能量部分反馈回电网,充分利用了MMC子模块储能的优势,提高了能量的利用率。放电阶段,通过一定的触发方式,逐步将能量耗散掉,该方法有效地降低了放电电阻的功率、阻值和耐压水平。最后,对建立的两端有源网络的MMC-HVDC系统进行了数字仿真,仿真结果验证了该启停控制策略的有效性。
文摘模块化多电平换流器(modular multilevel converter,MMC)为多电平换流器家族中的一员,其技术特点非常适用于电压源换流器型高压直流(voltage source converter high voltage direct current,VSC-HVDC)输电领域。为了分析MMC的最新研究进展,首先介绍了MMC的拓扑电路及其工作原理,分析了其技术特点和应用领域,比较了其相对于传统2电平和3电平VSC拓扑的优势所在。然后分别从MMC的数学模型、调制策略、子模块电容均压、预充电、内部环流、控制方面、换流阀试验以及其在VSC-HVDC系统中的工程应用等方面,回顾了MMC目前在国内外的最新研究进展和工程应用现状,并指出了MMC自身的缺点和今后亟待研究的关键问题。已有的研究表明,MMC在电力系统中有着广阔的应用前景,是未来高压直流输电技术的一个重要发展方向。
文摘作为柔性直流输电工程的连接单元,直流海底电缆的绝缘水平关系着输电工程的安全运行。以舟山多端柔性直流输电工程中定海换流站至岱山换流站的海底柔性直流电缆为研究对象,采用统计法仿真计算了模块化多电平换流器型柔性直流输电海缆过电压分布规律,得出柔性直流海缆的绝缘水平。通过仿真计算,得出了直流电缆的故障过电压最大值,即导体对铅套、铅套对铠装和铠装对地的最大过电压分别为403.44 k V、6.72 k V和0.39k V;选取30%的绝缘裕度,确定了直流电缆的绝缘水平,即导体对铅套为525 k V、铅套对铠装为9 k V和铠装对地为0.6 k V。计算结果可为柔性直流电缆的选型及试验提供重要参考。
文摘针对模块化多电平换流器型高压直流输电系统(modular multilevel converter based high-voltage direct current,MMC-HVDC),为了确保停运过程中子模块电容能够可靠且快速地放电,提出一套完整的停运控制策略。根据作用机理的不同,停运过程被划分为能量反馈阶段、可控能量耗散阶段和不可控能量耗散阶段。在能量反馈阶段中,通过提高调制比m,三次谐波注入,调节换流变压器变比及冗余子模块的投入,降低子模块电容电压,最大程度地将电容中的储存能量反馈至电网。在可控能量耗散阶段,子模块电容通过直流线路或者启动电阻进行放电,避免了放电电阻的使用。在不可控能量耗散阶段,子模块电容仅通过子模块电阻进行放电。最后,基于时域仿真软件PSCAD/EMTDC下搭建的400 MW/±200 kV数字仿真模型,验证所提出方法的有效性。
文摘为了解决现有电网换相换流器(LCC)与模块化多电平换流器(MMC)组成的混合高压直流(HVDC)输电系统采用半桥MMC时不具有直流侧故障清除能力、采用全桥MMC时成本过高的问题,提出了一种使用新型的电流单向型MMC与LCC连接构成的混合直流输电系统。构建了单极800 k V/2 500 MW的双端系统模型,对其启动过程、典型故障过程和功率反转过程进行了仿真,结果表明提出的混合系统具有可行性、直流故障清除能力、短时无功支撑能力和双向功率传输能力。