为分析模块化模糊神经网络的训练机制,进一步降低其训练复杂度,增强模型的泛化性能,尝试采用部分训练样本对模型进行相对粗训练,并以广西全省1957—2003年连续47 a 5月平均降水量作为实验数据,统计各种参数条件下模型的逐步预测误差情...为分析模块化模糊神经网络的训练机制,进一步降低其训练复杂度,增强模型的泛化性能,尝试采用部分训练样本对模型进行相对粗训练,并以广西全省1957—2003年连续47 a 5月平均降水量作为实验数据,统计各种参数条件下模型的逐步预测误差情况。结果表明:由部分训练样本参与训练的模型所得测试误差普遍低于由全部训练样本参与训练的模型所得测试误差,证明该方法可行。展开更多
文摘为分析模块化模糊神经网络的训练机制,进一步降低其训练复杂度,增强模型的泛化性能,尝试采用部分训练样本对模型进行相对粗训练,并以广西全省1957—2003年连续47 a 5月平均降水量作为实验数据,统计各种参数条件下模型的逐步预测误差情况。结果表明:由部分训练样本参与训练的模型所得测试误差普遍低于由全部训练样本参与训练的模型所得测试误差,证明该方法可行。