期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
无人机桨叶损伤的在线模型估计新方法 被引量:1
1
作者 张霄 倪铭 +1 位作者 余翔 郭雷 《航空学报》 EI CAS CSCD 北大核心 2020年第1期222-228,共7页
无人机在复杂高对抗环境中极易出现桨叶结构受损故障,造成无人机控制性能退化甚至失稳,给无人机带来灾难性后果。桨叶结构损伤条件下无人机动力学模型的在线估计与重建是保障无人机控制系统稳定的重要前提。由于桨叶损伤干扰隐含于无人... 无人机在复杂高对抗环境中极易出现桨叶结构受损故障,造成无人机控制性能退化甚至失稳,给无人机带来灾难性后果。桨叶结构损伤条件下无人机动力学模型的在线估计与重建是保障无人机控制系统稳定的重要前提。由于桨叶损伤干扰隐含于无人机动力学模型的内部,可观测性较低,典型的干扰观测器难以实现对此类干扰的估计。提出了一种新型穿透型干扰观测器,通过构造穿透函数,将模型内部的干扰映射到一个新建的平行空间,实现了对桨叶损伤的估计和故障后无人机的建模,并给出了所设计穿透型干扰观测器的稳定性条件。以四旋翼无人机为应用对象,对桨叶损伤形成的干扰进行在线估计与量化,反演出桨叶随机出现的损伤,实现了桨叶损伤后无人机动力学模型的在线精细重建,解决了无人机桨叶损伤故障下力矩输入难以直接测量的问题。半物理仿真实验验证了所提方法的有效性。 展开更多
关键词 在线建模 模型不确定量化 干扰估计 桨叶损伤 无人机
原文传递
Parametric sensitivity analysis of precipitation and temperature based on multi-uncertainty quantification methods in the Weather Research and Forecasting model 被引量:3
2
作者 DI ZhenHua 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第5期876-898,共23页
Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions b... Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain. 展开更多
关键词 Multi-uncertainty quantification methods Qualitative parameters screening Quantitative sensitivity analysis Weather Research and Forecasting model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部