[Objective] The aim was to compare and analyze microwave coherent and incoherent scattering models in a corn field. [Method] In the research, based on a coherent scattering model (Stile), we proposed a coherent scat...[Objective] The aim was to compare and analyze microwave coherent and incoherent scattering models in a corn field. [Method] In the research, based on a coherent scattering model (Stile), we proposed a coherent scattering model exclusive for corn, in which, physical optics (PO) and infinite-length dielectric cylinder were used to calculate single-scattering matrices of corn leaves and stalks. In addition, coherent components produced from interaction among the scattering mechanisms were also considered and this coherent model was compared with the Michigan Mi- crowave Canopy Scattering (MIMICS) model. The measured data in a corn filed in Gongzhuling in Jilin Province were used as the input parameters of the coherent and incoherent models. We simulated backscattering coefficients of VV and HH po- larization at L and C bands and made a comparison between the simulation results. [Result] The simulation results at L-band were poor, which indicated that we could not find regularity at early growth stage of vegetation. In addition, comparisons be- tween coherent and incoherent scattering models proved that the coherence triggered by the scattering mechanism was small. [Conclusion] In the research, we analyzed differences between coherent and incoherent scattering models with change of incident angle, and further analysis on the differences with change of vegetation and soil needed to be made in future.展开更多
Aims Phylogenetic diversity metrics can discern the relative contributions of ecological and evolutionary processes associated with the assembly of plant communities.However,the magnitude of the potential variation as...Aims Phylogenetic diversity metrics can discern the relative contributions of ecological and evolutionary processes associated with the assembly of plant communities.However,the magnitude of the potential variation associated with phylogenetic methodologies,and its effect on estimates of phylogenetic diversity,remains poorly understood.Here,we assess how sources of variation associated with estimates of phylogenetic diversity can pote ntially affect our understanding of plant community structure for a series of temperate forest plots in China.Methods In total,20 forest plots,comprising of 274 woody species and 581 herbaceous species,were surveyed and sampled along an elevational gradient of 2800 m on Taibai Mountain,China.We used multi-model inference to search for the most parsimonious relationship between estimates of phylogenetic diversity and each of four predictors(i.e.type of phylogenetic reconstruction method,phylogenetic diversity metric,woody or herbaceous growth form and elevation),and their pairwise interactions.Important Findings There was nosignificant difference in patterns of phylogenetic diversity when using synthesis-based vs.molecular-based phylogenetic methods.Results showed that elevation,the type of phylogenetic diversity metric,growth form and their interactions,accounted for>44% of the variance in our estimates of phylogenetic diversity.In general,phylogenetic diversity decreased with increasing elevation;however,the trend was weaker for herbaceous plants than for woody plants.Moreover,the three phylogenetic diversity metrics showed consistent patterns(i.e.clustered)across the elevational gradient for woody plants.For herbaceous plants,the mean pairwise distanee showed a random distribution over the gradient.These results suggest that a better understanding of temperate forest comunity structure can be obtained when estimates of phylogenetic diversity include methodological and environmental sources of variation.展开更多
基金Supported by Hunan Provincial Natural Science Foundation(10JJ4027)Opening Fund of State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing(10R01)~~
文摘[Objective] The aim was to compare and analyze microwave coherent and incoherent scattering models in a corn field. [Method] In the research, based on a coherent scattering model (Stile), we proposed a coherent scattering model exclusive for corn, in which, physical optics (PO) and infinite-length dielectric cylinder were used to calculate single-scattering matrices of corn leaves and stalks. In addition, coherent components produced from interaction among the scattering mechanisms were also considered and this coherent model was compared with the Michigan Mi- crowave Canopy Scattering (MIMICS) model. The measured data in a corn filed in Gongzhuling in Jilin Province were used as the input parameters of the coherent and incoherent models. We simulated backscattering coefficients of VV and HH po- larization at L and C bands and made a comparison between the simulation results. [Result] The simulation results at L-band were poor, which indicated that we could not find regularity at early growth stage of vegetation. In addition, comparisons be- tween coherent and incoherent scattering models proved that the coherence triggered by the scattering mechanism was small. [Conclusion] In the research, we analyzed differences between coherent and incoherent scattering models with change of incident angle, and further analysis on the differences with change of vegetation and soil needed to be made in future.
基金supported by the National Natural Science Foundation of China(31500335)the Strategic Priority Research Program of Chinese Academy of Sciences(XDB31000000).
文摘Aims Phylogenetic diversity metrics can discern the relative contributions of ecological and evolutionary processes associated with the assembly of plant communities.However,the magnitude of the potential variation associated with phylogenetic methodologies,and its effect on estimates of phylogenetic diversity,remains poorly understood.Here,we assess how sources of variation associated with estimates of phylogenetic diversity can pote ntially affect our understanding of plant community structure for a series of temperate forest plots in China.Methods In total,20 forest plots,comprising of 274 woody species and 581 herbaceous species,were surveyed and sampled along an elevational gradient of 2800 m on Taibai Mountain,China.We used multi-model inference to search for the most parsimonious relationship between estimates of phylogenetic diversity and each of four predictors(i.e.type of phylogenetic reconstruction method,phylogenetic diversity metric,woody or herbaceous growth form and elevation),and their pairwise interactions.Important Findings There was nosignificant difference in patterns of phylogenetic diversity when using synthesis-based vs.molecular-based phylogenetic methods.Results showed that elevation,the type of phylogenetic diversity metric,growth form and their interactions,accounted for>44% of the variance in our estimates of phylogenetic diversity.In general,phylogenetic diversity decreased with increasing elevation;however,the trend was weaker for herbaceous plants than for woody plants.Moreover,the three phylogenetic diversity metrics showed consistent patterns(i.e.clustered)across the elevational gradient for woody plants.For herbaceous plants,the mean pairwise distanee showed a random distribution over the gradient.These results suggest that a better understanding of temperate forest comunity structure can be obtained when estimates of phylogenetic diversity include methodological and environmental sources of variation.