The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered.A matched field localization algorithm based on CS-MUSIC(Compressive Sensing Multi...The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered.A matched field localization algorithm based on CS-MUSIC(Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning.The signal matrix is calculated through the SVD(Singular Value Decomposition) of the observation matrix.The observation matrix in the sparse mathematical model is replaced by the signal matrix,and a new concise sparse mathematical model is obtained,which means not only the scale of the localization problem but also the noise level is reduced;then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS(Compressive Sensing) method and MUSIC(Multiple Signal Classification) method.The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots,and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large,which will be proved in this paper.展开更多
The traditional market segmentation was based on "transcendental rationality" or "Situational Rationality", studies shows that it had disadvantages. This paper states the "Situational" integrated rationality hyp...The traditional market segmentation was based on "transcendental rationality" or "Situational Rationality", studies shows that it had disadvantages. This paper states the "Situational" integrated rationality hypothesis and then comes up with the market segmenting models and classification algorithm basing on this hypothesis. This algorithm combined the Rough Set theory and Neural Networks in application, which overcome the dilemma that caused complicated network structure and long training time by only using Neural Networks and influenced the classification precision caused by noise disturbance by only using Rough Set methods. Finally, the paper did a comparison experiment between the traditional method and the method we came up, the results shows that the model and algorithm has its advantage on every aspects.展开更多
Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the resul...Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.展开更多
In order to improve the automatic retrieval ability of English vocabulary, for the distribution of semantic attributes in English vocabulary, an automatic classification method of English vocabulary is proposed based ...In order to improve the automatic retrieval ability of English vocabulary, for the distribution of semantic attributes in English vocabulary, an automatic classification method of English vocabulary is proposed based on association rules, English vocabulary data storage model is constructed, a two element linguistic feature function is constructed for describing the directionality of English lexical retrieval scheduling, English vocabulary classification decision making model is constructed based on contextual relations of English vocabulary, the features of the association rules of English vocabulary are extracted, the adaptive learning method is used to realize the automatic classification of English vocabulary. The simulation results show that the method of English vocabulary classification has good performance, the classification error rate is low, the retrieval precision is high, and the computational overhead is small.展开更多
DNA-based approaches to systematics have changed dramatically during the last two decades with the rise of DNA barcoding methods and newer multi-locus methods for species delimitation. During the last half-decade, par...DNA-based approaches to systematics have changed dramatically during the last two decades with the rise of DNA barcoding methods and newer multi-locus methods for species delimitation. During the last half-decade, partly driven by the new sequencing technologies, the focus has shifted to multi-locus sequence data and the identification of species within the frame-work of the multi-species coalescent (MSC). In this paper, I discuss model-based Bayesian methods for species delimitation that have been developed in recent years using the MSC. Several approximate methods for species delimitation (and their limitations) are also discussed. Explicit species delimitation models have the advantage of clarifying more precisely what is being delimited and what assumptions we are making in doing so. Moreover, the methods can be very powerful when applied to large multi-locus datasets and thus take full advantage of data generated using today's technologies [Current Zoology 61 (5): 846-853,2015].展开更多
Naive Bayes(NB) is one of the most popular classification methods. It is particularly useful when the dimension of the predictor is high and data are generated independently. In the meanwhile, social network data are ...Naive Bayes(NB) is one of the most popular classification methods. It is particularly useful when the dimension of the predictor is high and data are generated independently. In the meanwhile, social network data are becoming increasingly accessible, due to the fast development of various social network services and websites. By contrast, data generated by a social network are most likely to be dependent. The dependency is mainly determined by their social network relationships. Then, how to extend the classical NB method to social network data becomes a problem of great interest. To this end, we propose here a network-based naive Bayes(NNB) method, which generalizes the classical NB model to social network data. The key advantage of the NNB method is that it takes the network relationships into consideration. The computational efficiency makes the NNB method even feasible in large scale social networks. The statistical properties of the NNB model are theoretically investigated. Simulation studies have been conducted to demonstrate its finite sample performance.A real data example is also analyzed for illustration purpose.展开更多
Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. T...Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. This paper proposed an improved parameter optimization method based on traditional particle swarm optimization (PSO) algorithm by changing the fitness function in the traditional evolution process of SVMs. Then, this PSO method was combined with simulated annealing global searching algorithm to avoid local convergence that traditional PSO algorithms usually run into. And this method has achieved better results which reflected in the receiver-operating characteristic curves in medical images classification and has gained considerable identification accuracy in clinical disease detection.展开更多
We show that the isomorphism problem is solvable in the class of central extensions of word-hyperbolic groups,and that the isomorphism problem for biautomatic groups reduces to that for biautomatic groups with finite ...We show that the isomorphism problem is solvable in the class of central extensions of word-hyperbolic groups,and that the isomorphism problem for biautomatic groups reduces to that for biautomatic groups with finite centre.We describe an algorithm that,given an arbitrary finite presentation of an automatic group Γ,will construct explicit finite models for the skeleta of K(Γ,1) and hence compute the integral homology and cohomology of Γ.展开更多
基金supported by the National Natural Science Foundation of China (61202208)
文摘The problem caused by shortness or excessiveness of snapshots and by coherent sources in underwater acoustic positioning is considered.A matched field localization algorithm based on CS-MUSIC(Compressive Sensing Multiple Signal Classification) is proposed based on the sparse mathematical model of the underwater positioning.The signal matrix is calculated through the SVD(Singular Value Decomposition) of the observation matrix.The observation matrix in the sparse mathematical model is replaced by the signal matrix,and a new concise sparse mathematical model is obtained,which means not only the scale of the localization problem but also the noise level is reduced;then the new sparse mathematical model is solved by the CS-MUSIC algorithm which is a combination of CS(Compressive Sensing) method and MUSIC(Multiple Signal Classification) method.The algorithm proposed in this paper can overcome effectively the difficulties caused by correlated sources and shortness of snapshots,and it can also reduce the time complexity and noise level of the localization problem by using the SVD of the observation matrix when the number of snapshots is large,which will be proved in this paper.
基金This paper is financial aided by the National Natural Science Foundation project in China (No. 70640008), The National Social Science Foundation project in China (No. 05BJY043) and The Foundation Project of Inner Mongolia education office (No. N J02019).
文摘The traditional market segmentation was based on "transcendental rationality" or "Situational Rationality", studies shows that it had disadvantages. This paper states the "Situational" integrated rationality hypothesis and then comes up with the market segmenting models and classification algorithm basing on this hypothesis. This algorithm combined the Rough Set theory and Neural Networks in application, which overcome the dilemma that caused complicated network structure and long training time by only using Neural Networks and influenced the classification precision caused by noise disturbance by only using Rough Set methods. Finally, the paper did a comparison experiment between the traditional method and the method we came up, the results shows that the model and algorithm has its advantage on every aspects.
基金supported by the National Natural Science Foundation of China (31123005)the Chinese Academy of Sciences (Y002731071)the National Basic Research Program of China (2009CB941300)
文摘Animal models provide myriad benefits to both experimental and clinical research. Unfortunately, in many situations, they fall short of expected results or provide contradictory results. In part, this can be the result of traditional molecular biological approaches that are relatively inefficient in elucidating underlying molecular mechanism. To improve the efficacy of animal models, a technological breakthrough is required. The growing availability and application of the high-throughput methods make systematic comparisons between human and animal models easier to perform. In the present study, we introduce the concept of the comparative systems biology, which we define as "comparisons of biological systems in different states or species used to achieve an integrated understanding of life forms with all their characteristic complexity of interactions at multiple levels". Furthermore, we discuss the applications of RNA-seq and ChIP-seq technologies to comparative systems biology between human and animal models and assess the potential applications for this approach in the future studies.
文摘In order to improve the automatic retrieval ability of English vocabulary, for the distribution of semantic attributes in English vocabulary, an automatic classification method of English vocabulary is proposed based on association rules, English vocabulary data storage model is constructed, a two element linguistic feature function is constructed for describing the directionality of English lexical retrieval scheduling, English vocabulary classification decision making model is constructed based on contextual relations of English vocabulary, the features of the association rules of English vocabulary are extracted, the adaptive learning method is used to realize the automatic classification of English vocabulary. The simulation results show that the method of English vocabulary classification has good performance, the classification error rate is low, the retrieval precision is high, and the computational overhead is small.
文摘DNA-based approaches to systematics have changed dramatically during the last two decades with the rise of DNA barcoding methods and newer multi-locus methods for species delimitation. During the last half-decade, partly driven by the new sequencing technologies, the focus has shifted to multi-locus sequence data and the identification of species within the frame-work of the multi-species coalescent (MSC). In this paper, I discuss model-based Bayesian methods for species delimitation that have been developed in recent years using the MSC. Several approximate methods for species delimitation (and their limitations) are also discussed. Explicit species delimitation models have the advantage of clarifying more precisely what is being delimited and what assumptions we are making in doing so. Moreover, the methods can be very powerful when applied to large multi-locus datasets and thus take full advantage of data generated using today's technologies [Current Zoology 61 (5): 846-853,2015].
基金supported by National Natural Science Foundation of China (Grant Nos. 11701560, 11501093, 11631003, 11690012, 71532001 and 11525101)the Fundamental Research Funds for the Central Universities+5 种基金the Fundamental Research Funds for the Central Universities (Grant Nos. 130028613, 130028729 and 2412017FZ030)the Research Funds of Renmin University of China (Grant No. 16XNLF01)the Beijing Municipal Social Science Foundation (Grant No. 17GLC051)Fund for Building World-Class Universities (Disciplines) of Renmin University of ChinaChina’s National Key Research Special Program (Grant No. 2016YFC0207700)Center for Statistical Science at Peking University
文摘Naive Bayes(NB) is one of the most popular classification methods. It is particularly useful when the dimension of the predictor is high and data are generated independently. In the meanwhile, social network data are becoming increasingly accessible, due to the fast development of various social network services and websites. By contrast, data generated by a social network are most likely to be dependent. The dependency is mainly determined by their social network relationships. Then, how to extend the classical NB method to social network data becomes a problem of great interest. To this end, we propose here a network-based naive Bayes(NNB) method, which generalizes the classical NB model to social network data. The key advantage of the NNB method is that it takes the network relationships into consideration. The computational efficiency makes the NNB method even feasible in large scale social networks. The statistical properties of the NNB model are theoretically investigated. Simulation studies have been conducted to demonstrate its finite sample performance.A real data example is also analyzed for illustration purpose.
文摘Support vector machine (SVM) is a widely used tool in the field of image processing and pattern recognition. However, the parameters selection of SVMs is a dilemma in disease identification and clinical diagnosis. This paper proposed an improved parameter optimization method based on traditional particle swarm optimization (PSO) algorithm by changing the fitness function in the traditional evolution process of SVMs. Then, this PSO method was combined with simulated annealing global searching algorithm to avoid local convergence that traditional PSO algorithms usually run into. And this method has achieved better results which reflected in the receiver-operating characteristic curves in medical images classification and has gained considerable identification accuracy in clinical disease detection.
文摘We show that the isomorphism problem is solvable in the class of central extensions of word-hyperbolic groups,and that the isomorphism problem for biautomatic groups reduces to that for biautomatic groups with finite centre.We describe an algorithm that,given an arbitrary finite presentation of an automatic group Γ,will construct explicit finite models for the skeleta of K(Γ,1) and hence compute the integral homology and cohomology of Γ.