期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用改进的SqueezeNet模型识别多类叶片病害
被引量:
37
1
作者
刘阳
高国琴
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第2期187-195,共9页
为实现作物叶片病害的准确识别,该研究以PlantVillage工程开源数据库中14种作物38类叶片为研究对象,从网络规模小型化和计算过程轻量化需求的角度出发,对经典轻量级卷积神经网络SqueezeNet提出改进措施,包括修改最后一层卷积层的输出、...
为实现作物叶片病害的准确识别,该研究以PlantVillage工程开源数据库中14种作物38类叶片为研究对象,从网络规模小型化和计算过程轻量化需求的角度出发,对经典轻量级卷积神经网络SqueezeNet提出改进措施,包括修改最后一层卷积层的输出、删除经典模型中的后3个fire模块并修改fire模块5的参数、调节fire模块中expand层中1×1和3×3的卷积核数目的比例、移动部分fire模块在模型中的位置等措施,共获取5种改进的病害叶片检测模型,并运用迁移学习和随机梯度下降算法进行训练。试验结果表明,在不过多损失网络性能的前提下,改进后5种模型的参数内存需求及模型计算量均呈现大幅减小,模型收敛迅速,其中最优模型参数内存需求仅为0.62 MB,模型运算量仅为111 MFLOPs,其平均准确率达到98.13%,平均查全率达到98.09%,平均查准率达到97.62%,在与已有相关研究的对比中表现出较高的性价比。该研究提出的改进模型在大幅减少参数内存要求和计算量的同时使模型性能保持在一个较高的水平,较好地平衡了这3项指标,适合将模型部署在移动终端等嵌入式资源受限设备上,有助于实现对作物病害的实时准确识别。
展开更多
关键词
病害
图像识别
SqueezeNet
轻量级卷积神经网络
模型参数内存需求
模型
运算
下载PDF
职称材料
题名
采用改进的SqueezeNet模型识别多类叶片病害
被引量:
37
1
作者
刘阳
高国琴
机构
江苏大学电气信息工程学院
南通职业大学电子信息学院
出处
《农业工程学报》
EI
CAS
CSCD
北大核心
2021年第2期187-195,共9页
基金
国家自然科学基金项目(51375210)
镇江市重点研发计划(GZ2018004)
+2 种基金
江苏高校优势学科建设工程资助项目
江苏省研究生科研与实践创新计划项目(CXZZ12_0694)
南通市科技计划项目(MSZ20155)。
文摘
为实现作物叶片病害的准确识别,该研究以PlantVillage工程开源数据库中14种作物38类叶片为研究对象,从网络规模小型化和计算过程轻量化需求的角度出发,对经典轻量级卷积神经网络SqueezeNet提出改进措施,包括修改最后一层卷积层的输出、删除经典模型中的后3个fire模块并修改fire模块5的参数、调节fire模块中expand层中1×1和3×3的卷积核数目的比例、移动部分fire模块在模型中的位置等措施,共获取5种改进的病害叶片检测模型,并运用迁移学习和随机梯度下降算法进行训练。试验结果表明,在不过多损失网络性能的前提下,改进后5种模型的参数内存需求及模型计算量均呈现大幅减小,模型收敛迅速,其中最优模型参数内存需求仅为0.62 MB,模型运算量仅为111 MFLOPs,其平均准确率达到98.13%,平均查全率达到98.09%,平均查准率达到97.62%,在与已有相关研究的对比中表现出较高的性价比。该研究提出的改进模型在大幅减少参数内存要求和计算量的同时使模型性能保持在一个较高的水平,较好地平衡了这3项指标,适合将模型部署在移动终端等嵌入式资源受限设备上,有助于实现对作物病害的实时准确识别。
关键词
病害
图像识别
SqueezeNet
轻量级卷积神经网络
模型参数内存需求
模型
运算
Keywords
diseases
image recognition
SqueezeNet
lightweight convolution neural network
memory requirement of model parameters
model computation
分类号
S126 [农业科学—农业基础科学]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用改进的SqueezeNet模型识别多类叶片病害
刘阳
高国琴
《农业工程学报》
EI
CAS
CSCD
北大核心
2021
37
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部