A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv...A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.展开更多
A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical po...A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.展开更多
Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the exten...Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the extension of the neural network to a higher-dimensional domain, e.g., complex-value or quaternion, has been proposed, and a number of higher-dimensional neural network models have been proposed. Using the quatemion, we have the advantage of expressing 3D (three-dimensional) object attitudes easily. In the quaternion domain, we can define inverse problems where the cause and the result are expressed by the quaternion. In this paper, we extend the neural network inversion method to the quatemion domain. Further, we provide the results of the computer experiments to demonstrate the process and effectiveness of our method.展开更多
By using observed CHAMP orbit ephemeredes and MSISE90 dry air model and regarding the earth as a sphere and an ellipsoid respectively, phase delays are simulated and the simulated data are retrieved under different sc...By using observed CHAMP orbit ephemeredes and MSISE90 dry air model and regarding the earth as a sphere and an ellipsoid respectively, phase delays are simulated and the simulated data are retrieved under different schemes. The comparison between the inverted temperature profiles and the model temperature profiles shows that by inverting observed data, we will get temperature results with large errors if the effect of Earth’s oblateness is omitted. The correction method is proved to be effective because the temperature errors decreased obviously with this method.展开更多
The underground water quality model with non-linear inversion problem is ill-posed, and boils down to solving the minimum of nonlinear function. Genetic algorithms are adopted in a number of individuals of groups by i...The underground water quality model with non-linear inversion problem is ill-posed, and boils down to solving the minimum of nonlinear function. Genetic algorithms are adopted in a number of individuals of groups by iterative search to find the optimal solution of the problem, the encoding strings as its operational objective, and achieving the iterative calculations by the genetic operators. It is an effective method of inverse problems of groundwater, with incomparable advantages and practical significances.展开更多
Spectral conjugate gradient method is an algorithm obtained by combination of spectral gradient method and conjugate gradient method,which is characterized with global convergence and simplicity of spectral gradient m...Spectral conjugate gradient method is an algorithm obtained by combination of spectral gradient method and conjugate gradient method,which is characterized with global convergence and simplicity of spectral gradient method,and small storage of conjugate gradient method.Besides,the spectral conjugate gradient method was proved that the search direction at each iteration is a descent direction of objective function even without relying on any line search method.Spectral conjugate gradient method is applied to full waveform inversion for numerical tests on Marmousi model.The authors give a comparison on numerical results obtained by steepest descent method,conjugate gradient method and spectral conjugate gradient method,which shows that the spectral conjugate gradient method is superior to the other two methods.展开更多
Accurate quantitative global scale snow water equivalent information is crucial for meteorology, hydrology, water cycle and global change studies, and is of great importance for snow melt-runoff forecast, water resour...Accurate quantitative global scale snow water equivalent information is crucial for meteorology, hydrology, water cycle and global change studies, and is of great importance for snow melt-runoff forecast, water resources management and flood control. With land surface process model and snow process model, the snow water equivalent can be simulated with certain accuracy, with the forcing data as input. However, the snow water equivalent simulated using the snow process models has large uncertainties spatially and temporally, and it may be far from the needs of practical applications. Thus, the large scale snow water equivalent information is mainly from remote sensing. Beginning with the launch of Nimbus-7 satellite, the research on microwave snow water equivalent remote sensing has developed for more than 30 years, researchers have made progress in many aspects, including the electromagnetic scattering and emission modeling, ground and airborne experiments, and inversion algorithms for future global high resolution snow water equivalent remote sensing program. In this paper, the research and progress in the aspects of electromagnetic scattering/emission modeling over snow covered terrain and snow water equivalent inversion algorithm will be summarized.展开更多
Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UC...Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.展开更多
The problem for determining the exchange rate function of 2D CCPF model by measurements on the partial boundary is considered and solved as one PDE-constraint optimization problem. The optimal variant is the minimum o...The problem for determining the exchange rate function of 2D CCPF model by measurements on the partial boundary is considered and solved as one PDE-constraint optimization problem. The optimal variant is the minimum of a cost functional that quantifies the difference between the measurements and the exact solutions. Gradientbased algorithm is used to solve this optimization problem. At each step, the derivative of the cost functional with respect to the exchange rate function is calculated and only one forward solution and one adjoint solution are needed. One method based on the adjoint equation is developed and implemented. Numerical examples show the efficiency of the adjoint method.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (No.3122020072)the Multi-investment Project of Tianjin Applied Basic Research(No.23JCQNJC00250)。
文摘A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors.
基金sponsored by Important National Science and Technology Specifi c Projects of China (No.2011ZX05001)
文摘A critical porosity model is often used to calculate the dry frame elastic modulus by the rock critical porosity value which is affected by many factors. In practice it is hard for us to obtain an accurate critical porosity value and we can generally take only an empirical critical porosity value which often causes errors. In this paper, we propose a method to obtain the rock critical porosity value by inverting P-wave velocity and applying it to predict S-wave velocity. The applications of experiment and log data both show that the critical porosity inversion method can reduce the uncertainty resulting from using an empirical value in the past and provide the accurate critical porosity value for predicting S-wave velocity which significantly improves the prediction accuracy.
文摘Recently, solutions to inverse problems have been required in various engineering fields. The neural network inversion method has been studied as one of the neural network-based solutions. On the other hand, the extension of the neural network to a higher-dimensional domain, e.g., complex-value or quaternion, has been proposed, and a number of higher-dimensional neural network models have been proposed. Using the quatemion, we have the advantage of expressing 3D (three-dimensional) object attitudes easily. In the quaternion domain, we can define inverse problems where the cause and the result are expressed by the quaternion. In this paper, we extend the neural network inversion method to the quatemion domain. Further, we provide the results of the computer experiments to demonstrate the process and effectiveness of our method.
基金Funded by the Opening Foundation of the Key Laboratory of Geospace Environment and Geodesy of the Ministry of Education(03-04-09).
文摘By using observed CHAMP orbit ephemeredes and MSISE90 dry air model and regarding the earth as a sphere and an ellipsoid respectively, phase delays are simulated and the simulated data are retrieved under different schemes. The comparison between the inverted temperature profiles and the model temperature profiles shows that by inverting observed data, we will get temperature results with large errors if the effect of Earth’s oblateness is omitted. The correction method is proved to be effective because the temperature errors decreased obviously with this method.
文摘The underground water quality model with non-linear inversion problem is ill-posed, and boils down to solving the minimum of nonlinear function. Genetic algorithms are adopted in a number of individuals of groups by iterative search to find the optimal solution of the problem, the encoding strings as its operational objective, and achieving the iterative calculations by the genetic operators. It is an effective method of inverse problems of groundwater, with incomparable advantages and practical significances.
文摘Spectral conjugate gradient method is an algorithm obtained by combination of spectral gradient method and conjugate gradient method,which is characterized with global convergence and simplicity of spectral gradient method,and small storage of conjugate gradient method.Besides,the spectral conjugate gradient method was proved that the search direction at each iteration is a descent direction of objective function even without relying on any line search method.Spectral conjugate gradient method is applied to full waveform inversion for numerical tests on Marmousi model.The authors give a comparison on numerical results obtained by steepest descent method,conjugate gradient method and spectral conjugate gradient method,which shows that the spectral conjugate gradient method is superior to the other two methods.
基金funded by the Strategic Priority Research Program for Space Sciences(Grant No.XDA04061200)of the Chinese Academy of SciencesNational Basic Research Program of China(Grant No.2015CB953701)
文摘Accurate quantitative global scale snow water equivalent information is crucial for meteorology, hydrology, water cycle and global change studies, and is of great importance for snow melt-runoff forecast, water resources management and flood control. With land surface process model and snow process model, the snow water equivalent can be simulated with certain accuracy, with the forcing data as input. However, the snow water equivalent simulated using the snow process models has large uncertainties spatially and temporally, and it may be far from the needs of practical applications. Thus, the large scale snow water equivalent information is mainly from remote sensing. Beginning with the launch of Nimbus-7 satellite, the research on microwave snow water equivalent remote sensing has developed for more than 30 years, researchers have made progress in many aspects, including the electromagnetic scattering and emission modeling, ground and airborne experiments, and inversion algorithms for future global high resolution snow water equivalent remote sensing program. In this paper, the research and progress in the aspects of electromagnetic scattering/emission modeling over snow covered terrain and snow water equivalent inversion algorithm will be summarized.
基金supported by the Basic Research Funds for the Central Universities (Grant No. 2652015116)the National Natural Science Foundation of China (Grant Nos. 51209187, 41530316 & 91125024)+1 种基金the National Key Research and Development Program of China (Grant No. 2016YFC0402805)the Beijing Higher Education Young Elite Teacher Project (Grant No. YETP0653)
文摘Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.
基金supported by the Key Project National Science Foundation of China(No.91130004)the Natural Science Foundation of China(Nos.11171077,11331004)the National Talents Training Base for Basic Research and Teaching of Natural Science of China(No.J1103105)
文摘The problem for determining the exchange rate function of 2D CCPF model by measurements on the partial boundary is considered and solved as one PDE-constraint optimization problem. The optimal variant is the minimum of a cost functional that quantifies the difference between the measurements and the exact solutions. Gradientbased algorithm is used to solve this optimization problem. At each step, the derivative of the cost functional with respect to the exchange rate function is calculated and only one forward solution and one adjoint solution are needed. One method based on the adjoint equation is developed and implemented. Numerical examples show the efficiency of the adjoint method.