为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范...为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范围内的改进LOLIMOT模型。通过某天然气发动机的辨识试验,从分布特征和计算原理角度,分析了该方法对预测结果的影响。结果表明:与原算法相比,改进算法的线性相关度R2提升了1.9%,验证了改进策略的有效性。改进LOLIMOT算法具备较高的收敛速度和稳定性,在排放模型领域具备一定的应用优势。展开更多
文摘为解决在选择性催化还原技术(selective catalytic reduction,SCR)的控制策略开发中局部线性模型树(local linear model tree,LOLIMOT)排放模型预测精度不足的问题,提出一种通过优化空间边界,将原模型的超矩形输入空间约束在物理意义范围内的改进LOLIMOT模型。通过某天然气发动机的辨识试验,从分布特征和计算原理角度,分析了该方法对预测结果的影响。结果表明:与原算法相比,改进算法的线性相关度R2提升了1.9%,验证了改进策略的有效性。改进LOLIMOT算法具备较高的收敛速度和稳定性,在排放模型领域具备一定的应用优势。