Permittivity of a sea foam layer is very important in investigating ocean brightness temperature model. At microwave frequency, the Rayleigh method is developed to estimate the effective permittivity of the sea foam l...Permittivity of a sea foam layer is very important in investigating ocean brightness temperature model. At microwave frequency, the Rayleigh method is developed to estimate the effective permittivity of the sea foam layer. To simplify the tedious calculation of sea foam effective permittivity at L band (1.4GHz), Pade' approximation is adopted to fit the sea foam effective permittivity computed by the Rayleigh method. With this fitting formula, a new brightness temperature model of sea foam layer defined by certain geophysical parameters, such as air volume fraction (AVF), sea surface temperature (SST), sea surface salinity (SSS) and thickness of foam layer d, is given. Furthermore, the sensitivities of the brightness temperature model to SST, SSS, d and AVF of a sea foam layer at L band are discussed. The sensitivities are ranked from most to least in the order: (1) d; (2) AVF; (3) SSS; (4) SST. This result indicates that the measurement errors old and AVF have significant impacts on the retrievals of SSS and SST. With the experimental brightness temperature data, the SSS and AFV are retrieved by cost function.展开更多
We have proven the general relations between the gap equations obeyed by dynamical fermion mass and thecorresponding effective potentials at finite temperature and chemical potential in D-dimensional four-fermion inte...We have proven the general relations between the gap equations obeyed by dynamical fermion mass and thecorresponding effective potentials at finite temperature and chemical potential in D-dimensional four-fermion interactionmodels. This gives an easy approach to get effective potentials directly from the gap equations. We find out explicitexpressions for the effective potentials at zero temperature in the cases of D = 2,3, and 4 for practical use.展开更多
We measured in the laboratory compressional wave velocity and electrical resistivity on 434 sediment samples collected from the Yellow Sea to study the joint elastic-electrical properties of marine sediments. Porosity...We measured in the laboratory compressional wave velocity and electrical resistivity on 434 sediment samples collected from the Yellow Sea to study the joint elastic-electrical properties of marine sediments. Porosity was found to reduce both elastic velocity and electrical resistivity of the marine sediments in a non-linear fashion; velocity showed an approximate linear increase with increasing logarithm of resistivity. Various effective medium models either implemented or developed were compared with the new dataset. The model results showed that the combined self-consistent approximation and differential effective medium model using critical porosity of 0.6 and 0.5 for velocity and resistivity respectively gave a reasonable description of the joint elastic-electrical behaviors of the marine sediments. The joint elastic-electrical properties of the marine sediments established would be used to estimate resistivity from measured velocity and vice versa, and could also be suitable for detection of gas hydrate or other suitable targets from joint seismic-resistivity surveys.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41276183)the National 863 Project of China (Grant No. 2009AA09Z102)
文摘Permittivity of a sea foam layer is very important in investigating ocean brightness temperature model. At microwave frequency, the Rayleigh method is developed to estimate the effective permittivity of the sea foam layer. To simplify the tedious calculation of sea foam effective permittivity at L band (1.4GHz), Pade' approximation is adopted to fit the sea foam effective permittivity computed by the Rayleigh method. With this fitting formula, a new brightness temperature model of sea foam layer defined by certain geophysical parameters, such as air volume fraction (AVF), sea surface temperature (SST), sea surface salinity (SSS) and thickness of foam layer d, is given. Furthermore, the sensitivities of the brightness temperature model to SST, SSS, d and AVF of a sea foam layer at L band are discussed. The sensitivities are ranked from most to least in the order: (1) d; (2) AVF; (3) SSS; (4) SST. This result indicates that the measurement errors old and AVF have significant impacts on the retrievals of SSS and SST. With the experimental brightness temperature data, the SSS and AFV are retrieved by cost function.
文摘We have proven the general relations between the gap equations obeyed by dynamical fermion mass and thecorresponding effective potentials at finite temperature and chemical potential in D-dimensional four-fermion interactionmodels. This gives an easy approach to get effective potentials directly from the gap equations. We find out explicitexpressions for the effective potentials at zero temperature in the cases of D = 2,3, and 4 for practical use.
基金supported by the Oceanic Special Public Sector Research Project (Grant No. 200805008)
文摘We measured in the laboratory compressional wave velocity and electrical resistivity on 434 sediment samples collected from the Yellow Sea to study the joint elastic-electrical properties of marine sediments. Porosity was found to reduce both elastic velocity and electrical resistivity of the marine sediments in a non-linear fashion; velocity showed an approximate linear increase with increasing logarithm of resistivity. Various effective medium models either implemented or developed were compared with the new dataset. The model results showed that the combined self-consistent approximation and differential effective medium model using critical porosity of 0.6 and 0.5 for velocity and resistivity respectively gave a reasonable description of the joint elastic-electrical behaviors of the marine sediments. The joint elastic-electrical properties of the marine sediments established would be used to estimate resistivity from measured velocity and vice versa, and could also be suitable for detection of gas hydrate or other suitable targets from joint seismic-resistivity surveys.