According to the sequential maximum a posteriori probability (SMAP) rule, this paper proposes a novel multi-scale Bayesian texture segmentation algorithm based on the wavelet domain Hidden Markov Tree (HMT) model. In ...According to the sequential maximum a posteriori probability (SMAP) rule, this paper proposes a novel multi-scale Bayesian texture segmentation algorithm based on the wavelet domain Hidden Markov Tree (HMT) model. In the proposed scheme, interscale label transition probability is directly defined and resoled by an EM algorithm. In order to smooth out the variations in the homogeneous regions, intrascale context information is considered. A Gaussian mixture model (GMM) in the redundant wavelet domain is also exploited to formulate the pixel-level statistical features of texture pattern so as to avoid the influence of the variance of pixel brightness. The performance of the proposed method is compared with the state-of-the-art HMTSeg method and evaluated by the experiment results.展开更多
We introduce a novel Sermntic-Category- Tree (SCT) model to present the sen-antic structure of a sentence for Chinese-English Machine Translation (MT). We use the SCT model to handle the reordering in a hierarchic...We introduce a novel Sermntic-Category- Tree (SCT) model to present the sen-antic structure of a sentence for Chinese-English Machine Translation (MT). We use the SCT model to handle the reordering in a hierarchical structure in which one reordering is dependent on the others. Different from other reordering approaches, we handle the reordering at three levels: sentence level, chunk level, and word level. The chunk-level reordering is dependent on the sentence-level reordering, and the word-level reordering is dependent on the chunk-level reordering. In this paper, we formally describe the SCT model and discuss the translation strategy based on the SCT model. Further, we present an algorithm for analyzing the source language in SCT and transforming the source SCT into the target SCT. We apply the SCT model to a role-based patent text MT to evaluate the ability of the SCT model. The experimental results show that SCT is efficient in handling the hierarehical reordering operation in MT.展开更多
The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction.Hence,solar flare prediction is considered a cost sensitive problem.A cost sensitive solar ...The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction.Hence,solar flare prediction is considered a cost sensitive problem.A cost sensitive solar flare prediction model is built by modifying the basic decision tree algorithm.Inconsistency rate with the exhaustive search strategy is used to determine the optimal combination of magnetic field parameters in an active region.These selected parameters are applied as the inputs of the solar flare prediction model.The performance of the cost sensitive solar flare prediction model is evaluated for the different thresholds of solar flares.It is found that more flaring samples are correctly predicted and more non-flaring samples are wrongly predicted with the increase of the cost for wrongly predicting flaring samples as non-flaring samples,and the larger cost of wrongly predicting flaring samples as non-flaring samples is required for the higher threshold of solar flares.This can be considered as the guide line for choosing proper cost to meet the requirements in different applications.展开更多
文摘According to the sequential maximum a posteriori probability (SMAP) rule, this paper proposes a novel multi-scale Bayesian texture segmentation algorithm based on the wavelet domain Hidden Markov Tree (HMT) model. In the proposed scheme, interscale label transition probability is directly defined and resoled by an EM algorithm. In order to smooth out the variations in the homogeneous regions, intrascale context information is considered. A Gaussian mixture model (GMM) in the redundant wavelet domain is also exploited to formulate the pixel-level statistical features of texture pattern so as to avoid the influence of the variance of pixel brightness. The performance of the proposed method is compared with the state-of-the-art HMTSeg method and evaluated by the experiment results.
基金supported by the National High Technology Research and Development Program of China under Grant No.2012AA011104the Fundamental Research Funds for the Center Universities
文摘We introduce a novel Sermntic-Category- Tree (SCT) model to present the sen-antic structure of a sentence for Chinese-English Machine Translation (MT). We use the SCT model to handle the reordering in a hierarchical structure in which one reordering is dependent on the others. Different from other reordering approaches, we handle the reordering at three levels: sentence level, chunk level, and word level. The chunk-level reordering is dependent on the sentence-level reordering, and the word-level reordering is dependent on the chunk-level reordering. In this paper, we formally describe the SCT model and discuss the translation strategy based on the SCT model. Further, we present an algorithm for analyzing the source language in SCT and transforming the source SCT into the target SCT. We apply the SCT model to a role-based patent text MT to evaluate the ability of the SCT model. The experimental results show that SCT is efficient in handling the hierarehical reordering operation in MT.
基金supported by the Young Researcher Grant of National Astronomical Observatories,Chinese Academy of Sciencesthe National Basic Research Program of China (Grant No.2011CB811406)the National Natural Science Foundation of China(Grant Nos.10733020,10921303 and 11078010)
文摘The mispredictive costs of flaring and non-flaring samples are different for different applications of solar flare prediction.Hence,solar flare prediction is considered a cost sensitive problem.A cost sensitive solar flare prediction model is built by modifying the basic decision tree algorithm.Inconsistency rate with the exhaustive search strategy is used to determine the optimal combination of magnetic field parameters in an active region.These selected parameters are applied as the inputs of the solar flare prediction model.The performance of the cost sensitive solar flare prediction model is evaluated for the different thresholds of solar flares.It is found that more flaring samples are correctly predicted and more non-flaring samples are wrongly predicted with the increase of the cost for wrongly predicting flaring samples as non-flaring samples,and the larger cost of wrongly predicting flaring samples as non-flaring samples is required for the higher threshold of solar flares.This can be considered as the guide line for choosing proper cost to meet the requirements in different applications.