期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于GM(1,1)回归的需求预测优化模型研究 被引量:4
1
作者 王少然 刘文慧 《机械制造》 2016年第11期1-4,共4页
为提高市场需求预测的精确性,将多元线性回归方法与灰色GM(1,1)结合进行需求预测,利用灰色马尔科夫状态转移概率矩阵对预测结果进行优化,建立了一个新的需求预测优化模型,最后进行算例分析。结果表明,通过矩阵优化可有效降低预测误差,... 为提高市场需求预测的精确性,将多元线性回归方法与灰色GM(1,1)结合进行需求预测,利用灰色马尔科夫状态转移概率矩阵对预测结果进行优化,建立了一个新的需求预测优化模型,最后进行算例分析。结果表明,通过矩阵优化可有效降低预测误差,以实现科学合理的决策。 展开更多
关键词 需求预测 多元线性回归GM(1 1) 模型矩阵优化
下载PDF
英语听力认知诊断测评模型优化研究 被引量:8
2
作者 董艳云 马晓梅 孟亚茹 《现代外语》 CSSCI 北大核心 2020年第3期389-401,共13页
本文旨在探究如何根据认知诊断模型拟合方法优化英语听力诊断性Q矩阵。首先对已有Q矩阵属性标注进行可靠性验证及人员拟合性分析,发现原Q矩阵仍有优化空间,其次采用DRFS法:拆分解析-匹配组合以及基于G-DINA测量模型的量化拟合筛选,进一... 本文旨在探究如何根据认知诊断模型拟合方法优化英语听力诊断性Q矩阵。首先对已有Q矩阵属性标注进行可靠性验证及人员拟合性分析,发现原Q矩阵仍有优化空间,其次采用DRFS法:拆分解析-匹配组合以及基于G-DINA测量模型的量化拟合筛选,进一步在原Q矩阵模型基础上优化出与数据拟合更佳的模型。结果表明:第一,优化的新模型在数据的相对拟合值和对分数变异的解释力及诊断力上好于原有模型;第二,新模型生成的属性掌握情况与被试自评结果的相关性更高,表明其属性掌握概率更接近自评结果。本研究提出的DRFS优化方法有望弥补以往Q矩阵构建及筛选的不足,为准确的模型构建提供借鉴。 展开更多
关键词 认知诊断方法 英语听力 一致性检验 Q矩阵模型优化
原文传递
Improved nonconvex optimization model for low-rank matrix recovery 被引量:1
3
作者 李玲芝 邹北骥 朱承璋 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期984-991,共8页
Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recov... Low-rank matrix recovery is an important problem extensively studied in machine learning, data mining and computer vision communities. A novel method is proposed for low-rank matrix recovery, targeting at higher recovery accuracy and stronger theoretical guarantee. Specifically, the proposed method is based on a nonconvex optimization model, by solving the low-rank matrix which can be recovered from the noisy observation. To solve the model, an effective algorithm is derived by minimizing over the variables alternately. It is proved theoretically that this algorithm has stronger theoretical guarantee than the existing work. In natural image denoising experiments, the proposed method achieves lower recovery error than the two compared methods. The proposed low-rank matrix recovery method is also applied to solve two real-world problems, i.e., removing noise from verification code and removing watermark from images, in which the images recovered by the proposed method are less noisy than those of the two compared methods. 展开更多
关键词 machine learning computer vision matrix recovery nonconvex optimization
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部