Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished direct...Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.展开更多
Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed fr...Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.展开更多
This paper presents a new algorithm to predict locations and severities of damage in structures by changing modal parameters. An existing algorithm of damage detection is reviewed and the new algorithm is formulated t...This paper presents a new algorithm to predict locations and severities of damage in structures by changing modal parameters. An existing algorithm of damage detection is reviewed and the new algorithm is formulated to improve the accuracy of damage locating and severity estimation by eliminating the erratic assumptions and limits in the existing algorithm. The damage prediction accuracy is numerically assessed for each algorithm when applied to a two-dimensional frame structure for which pre-damage and post-damage modal parameters are available for only a few modes of vibration. The analysis results illustrate the improved accuracy of the new algorithm when compared to the existing algorithm.展开更多
This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Ide...This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Identification errors are analyzed for their dependence on these structural uncertainties. Asymptotic distributions of scaled sequences of estimation errors are derived.展开更多
基金Project(2014CB239205)supported by the National Basic Research Program of ChinaProject(20011ZX05030-005-003)supported by the National Science and Technology Major Project of China
文摘Faults and fractures of multiple scales are frequently induced and generated in compressional structural system. Comprehensive identification of these potential faults and fractures that cannot be distinguished directly from seismic profile of the complex structures is still an unanswered problem. Based on the compressional structural geometry and kinematics theories as well as the structural interpretation from seismic data, a set of techniques is established for the identification of potential faults and fractures in compressional structures. Firstly, three-dimensional(3D) patterns and characteristics of the faults directly interpreted from seismic profile were illustrated by 3D structural model. Then, the unfolding index maps, the principal structural curvature maps, and tectonic stress field maps were obtained from structural restoration. Moreover, potential faults and fractures in compressional structures were quantitatively identified relying on comprehensive analysis of these three maps. Successful identification of the potential faults and fractures in Mishrif limestone formation and in Asmari dolomite formation of Buzurgan anticline in Iraq demonstrates the applicability and reliability of these techniques.
文摘Experimental modeling of a middle-rise office building via ambient modal identification is presented. A 200-DOF (Dimension of freedom) test model is designed to correlate with finite element mode. A newly developed frequency-spatial domain decomposition ( FSDD ) technique is used to identify modal characteristics of the full-size building by using ambient response measurements. In the interested frequency ranges of 0~4.5 Hz and 0~ 6.5 Hz altogether 9 bending and torsion modes are identified. As one of the major focuses of the project, the accurate damping estimation is conducted based on FSDD. The identified modal frequencies and mode shapes are utilized for finite element model tuning. Excellent agreement has been achieved with respect to the final tuned finite element (FE) model up to 9 modes.
基金The project was financially supported by the National Natural Science Foundation of China (No. 50479027).
文摘This paper presents a new algorithm to predict locations and severities of damage in structures by changing modal parameters. An existing algorithm of damage detection is reviewed and the new algorithm is formulated to improve the accuracy of damage locating and severity estimation by eliminating the erratic assumptions and limits in the existing algorithm. The damage prediction accuracy is numerically assessed for each algorithm when applied to a two-dimensional frame structure for which pre-damage and post-damage modal parameters are available for only a few modes of vibration. The analysis results illustrate the improved accuracy of the new algorithm when compared to the existing algorithm.
文摘This work is concerned with identification of systems that are subject to not only measurement noises, but also structural uncertainties such as unmodeled dynamics, sensor nonlinear mismatch, and observation bins. Identification errors are analyzed for their dependence on these structural uncertainties. Asymptotic distributions of scaled sequences of estimation errors are derived.