This paper presents an empirical model for estimating the zonal mean aerosol extinction profiles in the stratosphere over 10°-wide latitude bands between 60°S and 60°N, on the basis of Stratospheric Aer...This paper presents an empirical model for estimating the zonal mean aerosol extinction profiles in the stratosphere over 10°-wide latitude bands between 60°S and 60°N, on the basis of Stratospheric Aerosol and Gas Experiment(SAGE) II aerosol extinction measurements at 1.02, 0.525, and 0.452 μm during the volcanically quiescent period between 1998–2004. First, an empirical model is developed for calculating the stratospheric aerosol extinction profiles at 1.02 μm. Then, starting from the 1.02 μm extinction profile and an exponential spectral dependence, an empirical algorithm is developed that allows the aerosol extinction profiles at other wavelengths to be calculated. Comparisons of the model-calculated aerosol extinction profiles at the wavelengths of 1.02, 0.525, and 0.452 μm and the SAGE II measurements show that the model-calculated aerosol extinction coefficients conform well with the SAGE II values, with the relative differences generally being within 15% from 2 km above the tropopause to 40 km. The model-calculated stratospheric aerosol optical depths at the three wavelengths are also in good agreement with the corresponding optical depths derived from the SAGE II measurements, with the relative differences being within 0.9% for all latitude bands. This paper provides a useful tool in simulating zonal mean aerosol extinction profiles, which can be used as representative background stratospheric aerosols in view of atmospheric modeling and remote sensing retrievals.展开更多
The Gauss-Seidel method is effective to solve the traditional sparse linear system. In the paper, we define a class of sparse linear systems in iterative algorithm. The iterative method for linear system can be extend...The Gauss-Seidel method is effective to solve the traditional sparse linear system. In the paper, we define a class of sparse linear systems in iterative algorithm. The iterative method for linear system can be extended to the dummy sparse linear system. We apply the Gauss-Seidel method, which is one of the iterative methods for linear system, to the thermal model of floorplan of VLSI physical design. The experimental results of dummy sparse linear system are computed by using Gauss-Seidel method that have shown our theory analysis and extendibility. The iterative time of our incremental thermal model is 5 times faster than that of the inverting matrix method.展开更多
A uniform and effective heat distribution inside the canned milk is very crucial for achieving effective sterilization. It is extremely difficult to establish the temperature profile inside the canned milk during cont...A uniform and effective heat distribution inside the canned milk is very crucial for achieving effective sterilization. It is extremely difficult to establish the temperature profile inside the canned milk during continuous industrial scale operation. Computational fluid dynamics (CFD) simulation can be a useful tool to determine the temperature distribution of the fluid inside the can during the sterilization process. A CFD model was developed for the sterilization of canned milk at 121 ~C. The simulation results were validated with the experimental measurements of temperatures. The formation and movement of slowest heating zone (SHZ) during the sterilization process was tracked. Moreover, effect of can position (vertical and horizontal) during processing on milk temperature distribution inside the can was also investigated. Higher Grashof and Rayleigh numbers were obtained for vertical positioning of can compared to horizontal can processing. Further, effectiveness of the process was calculated based on F-value and these results reinforced the positive effect of horizontal position of can during the sterilization process.展开更多
Motivated by an animal territoriality model,we consider a centroidal Voronoi tessellation algorithm from a dynamical systems perspective.In doing so,we discuss the stability of an aligned equilibrium configuration for...Motivated by an animal territoriality model,we consider a centroidal Voronoi tessellation algorithm from a dynamical systems perspective.In doing so,we discuss the stability of an aligned equilibrium configuration for a rectangular domain that exhibits interesting symmetry properties.We also demonstrate the procedure for performing a center manifold reduction on the system to extract a set of coordinates which capture the long term dynamics when the system is close to a bifurcation.Bifurcations of the system restricted to the center manifold are then classified and compared to numerical results.Although we analyze a specific set-up,these methods can in principle be applied to any bifurcation point of any equilibrium for any domain.展开更多
Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur...Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.展开更多
Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effec...Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effect of a method of minimizing movements in positions on a plate with varying generation of noise-heat. Control by monitoring temperature changes caused larger movements in positions than that without control because maximum change in temperature occurred at non-monitoring positions. The best method of minimizing movements in positions due to thermal expansion of a plate with varying generation of noise-heat was model predictive control by the monitoring movements and distributed temperature changes in the control heater according to the effects of the generation of noise-heat. The maximum movement in positions was 6 nm, which was 1/4 times of that without control.展开更多
We apply two geometrical diagnostics, the statefinder {s, r} and Om(x), to discriminate the Spatial Ricci scalar dark energy model from the ACDM model. We plot the evolution trajectories of those models in the state...We apply two geometrical diagnostics, the statefinder {s, r} and Om(x), to discriminate the Spatial Ricci scalar dark energy model from the ACDM model. We plot the evolution trajectories of those models in the statefinder plane and Om(x) plane. We show that the Spatial Ricci scalar dark energy model can be distinguished from the ACDM model at 68.3% confidence level for z ≤ 1.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 41275047)the National Basic Research Program of China (Grant No. 2013CB955801)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA05100300)
文摘This paper presents an empirical model for estimating the zonal mean aerosol extinction profiles in the stratosphere over 10°-wide latitude bands between 60°S and 60°N, on the basis of Stratospheric Aerosol and Gas Experiment(SAGE) II aerosol extinction measurements at 1.02, 0.525, and 0.452 μm during the volcanically quiescent period between 1998–2004. First, an empirical model is developed for calculating the stratospheric aerosol extinction profiles at 1.02 μm. Then, starting from the 1.02 μm extinction profile and an exponential spectral dependence, an empirical algorithm is developed that allows the aerosol extinction profiles at other wavelengths to be calculated. Comparisons of the model-calculated aerosol extinction profiles at the wavelengths of 1.02, 0.525, and 0.452 μm and the SAGE II measurements show that the model-calculated aerosol extinction coefficients conform well with the SAGE II values, with the relative differences generally being within 15% from 2 km above the tropopause to 40 km. The model-calculated stratospheric aerosol optical depths at the three wavelengths are also in good agreement with the corresponding optical depths derived from the SAGE II measurements, with the relative differences being within 0.9% for all latitude bands. This paper provides a useful tool in simulating zonal mean aerosol extinction profiles, which can be used as representative background stratospheric aerosols in view of atmospheric modeling and remote sensing retrievals.
文摘The Gauss-Seidel method is effective to solve the traditional sparse linear system. In the paper, we define a class of sparse linear systems in iterative algorithm. The iterative method for linear system can be extended to the dummy sparse linear system. We apply the Gauss-Seidel method, which is one of the iterative methods for linear system, to the thermal model of floorplan of VLSI physical design. The experimental results of dummy sparse linear system are computed by using Gauss-Seidel method that have shown our theory analysis and extendibility. The iterative time of our incremental thermal model is 5 times faster than that of the inverting matrix method.
文摘A uniform and effective heat distribution inside the canned milk is very crucial for achieving effective sterilization. It is extremely difficult to establish the temperature profile inside the canned milk during continuous industrial scale operation. Computational fluid dynamics (CFD) simulation can be a useful tool to determine the temperature distribution of the fluid inside the can during the sterilization process. A CFD model was developed for the sterilization of canned milk at 121 ~C. The simulation results were validated with the experimental measurements of temperatures. The formation and movement of slowest heating zone (SHZ) during the sterilization process was tracked. Moreover, effect of can position (vertical and horizontal) during processing on milk temperature distribution inside the can was also investigated. Higher Grashof and Rayleigh numbers were obtained for vertical positioning of can compared to horizontal can processing. Further, effectiveness of the process was calculated based on F-value and these results reinforced the positive effect of horizontal position of can during the sterilization process.
文摘Motivated by an animal territoriality model,we consider a centroidal Voronoi tessellation algorithm from a dynamical systems perspective.In doing so,we discuss the stability of an aligned equilibrium configuration for a rectangular domain that exhibits interesting symmetry properties.We also demonstrate the procedure for performing a center manifold reduction on the system to extract a set of coordinates which capture the long term dynamics when the system is close to a bifurcation.Bifurcations of the system restricted to the center manifold are then classified and compared to numerical results.Although we analyze a specific set-up,these methods can in principle be applied to any bifurcation point of any equilibrium for any domain.
文摘Based on the Residual Oil Hydrodesulfurization Treatment Unit (S-RHT), the n-order reaction kinetic model for residual oil HDS reactions and artificial neural network (ANN) model were developed to determine the sulfur content of hydrogenated residual oil. The established ANN model covered 4 input variables, 1 output variable and 1 hidden layer with 15 neurons. The comparison between the results of two models was listed. The results showed that the predicted mean relative errors of the two models with three different sample data were less than 5% and both the two models had good predictive precision and extrapolative feature for the HDS process. The mean relative error of 5 sets of testing data of the ANN model was 1.62%—3.23%, all of which were smaller than that of the common mechanism model (3.47%— 4.13%). It showed that the ANN model was better than the mechanism model both in terms of fitting results and fitting difficulty. The models could be easily applied in practice and could also provide a reference for the further research of residual oil HDS process.
文摘Precise temperature control to decrease movements in positions due to thermal expansion of work pieces is required in the manufacturing processes to achieve nanometer-order accuracy. We analytically examined the effect of a method of minimizing movements in positions on a plate with varying generation of noise-heat. Control by monitoring temperature changes caused larger movements in positions than that without control because maximum change in temperature occurred at non-monitoring positions. The best method of minimizing movements in positions due to thermal expansion of a plate with varying generation of noise-heat was model predictive control by the monitoring movements and distributed temperature changes in the control heater according to the effects of the generation of noise-heat. The maximum movement in positions was 6 nm, which was 1/4 times of that without control.
基金supported in part by the National Natural Science Foundation of China (Grant No. 11147028)the Hebei Provincial Natural Science Foundation of China (Grant No. A2011201147)the Research Fund for Doctoral Programs of Hebei University (Grant No. 2009-155)
文摘We apply two geometrical diagnostics, the statefinder {s, r} and Om(x), to discriminate the Spatial Ricci scalar dark energy model from the ACDM model. We plot the evolution trajectories of those models in the statefinder plane and Om(x) plane. We show that the Spatial Ricci scalar dark energy model can be distinguished from the ACDM model at 68.3% confidence level for z ≤ 1.