To extract region of interests (ROI) in brain magnetic resonance imaging (MRI) with more than two objects and improve the segmentation accuracy, a hybrid model of a kemel-based fuzzy c-means (KFCM) clustering al...To extract region of interests (ROI) in brain magnetic resonance imaging (MRI) with more than two objects and improve the segmentation accuracy, a hybrid model of a kemel-based fuzzy c-means (KFCM) clustering algorithm and Chan-Vese (CV) model for brain MRI segmentation is proposed. The approach consists of two succes- sive stages. Firstly, the KFCM is used to make a coarse segmentation, which achieves the automatic selection of initial contour. Then an improved CV model is utilized to subdivide the image. Fuzzy membership degree from KFCM clus- tering is incorporated into the fidelity term of the 2-phase piecewise constant CV model to obtain accurate multi-object segmentation. Experimental results show that the proposed model has advantages both in accuracy and in robustness to noise in comparison with fuzzy c-means (FCM) clustering, KFCM, and the hybrid model of FCM and CV on brain MRI segmentation.展开更多
A novel method to infer the finger flexing motions of various arm postures is proposed. From the gyroscope signal, the authors recognized forearm posture using K-means clustering method. Then finger motion inferred. F...A novel method to infer the finger flexing motions of various arm postures is proposed. From the gyroscope signal, the authors recognized forearm posture using K-means clustering method. Then finger motion inferred. For finger motion inference, Gaussian model of information entropy and maximum likelibood method was utilized. Experimentally it is obtained that the average recognition rate with the forearm posture inference is much higher than those without the inference by 30.7%.展开更多
It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in de...It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.展开更多
In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a ...In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a parallel algorithm MapReduce programming model based on the research of K-Medoids algorithm. This algorithm increase the computation granularity and reduces the communication cost ratio based on the MapReduce model. The experimental results show that the improved parallel algorithm compared with other algorithms, speedup and operation efficiency is greatly enhanced.展开更多
The problem of task assignment for multiple cooperating unmanned aerial vehicle(UAV) teams is considered. Multiple UAVs forming several small teams are needed to perform attack tasks on a set of predetermined ground t...The problem of task assignment for multiple cooperating unmanned aerial vehicle(UAV) teams is considered. Multiple UAVs forming several small teams are needed to perform attack tasks on a set of predetermined ground targets. A hierarchical task assignment method is presented to address the problem. It breaks the original problem down to three levels of sub-problems: target clustering, cluster allocation and target assignment. The first two sub-problems are centrally solved by using clustering algorithms and integer linear programming, respectively, and the third sub-problem is solved in a distributed and parallel manner, using a mixed integer linear programming model and an improved ant colony algorithm. The proposed hierarchical method can reduce the computational complexity of the task assignment problem considerably, especially when the number of tasks or the number of UAVs is large. Experimental results show that this method is feasible and more efficient than non-hierarchical methods.展开更多
基金Supported by National Natural Science Foundation of China (No. 60872065)
文摘To extract region of interests (ROI) in brain magnetic resonance imaging (MRI) with more than two objects and improve the segmentation accuracy, a hybrid model of a kemel-based fuzzy c-means (KFCM) clustering algorithm and Chan-Vese (CV) model for brain MRI segmentation is proposed. The approach consists of two succes- sive stages. Firstly, the KFCM is used to make a coarse segmentation, which achieves the automatic selection of initial contour. Then an improved CV model is utilized to subdivide the image. Fuzzy membership degree from KFCM clus- tering is incorporated into the fidelity term of the 2-phase piecewise constant CV model to obtain accurate multi-object segmentation. Experimental results show that the proposed model has advantages both in accuracy and in robustness to noise in comparison with fuzzy c-means (FCM) clustering, KFCM, and the hybrid model of FCM and CV on brain MRI segmentation.
基金supported by the MKE(The Ministry of Knowledge Economy),Koreathe ITRC(Information Technology Research Center)support program(NIPA-2010-C1090-1021-0010)
文摘A novel method to infer the finger flexing motions of various arm postures is proposed. From the gyroscope signal, the authors recognized forearm posture using K-means clustering method. Then finger motion inferred. For finger motion inference, Gaussian model of information entropy and maximum likelibood method was utilized. Experimentally it is obtained that the average recognition rate with the forearm posture inference is much higher than those without the inference by 30.7%.
基金Projects(41001260,61173122,61573380) supported by the National Natural Science Foundation of ChinaProject(11JJ5044) supported by the Hunan Provincial Natural Science Foundation of China
文摘It is illegal to spread and transmit pornographic images over internet,either in real or in artificial format.The traditional methods are designed to identify real pornographic images and they are less efficient in dealing with artificial images.Therefore,criminals turn to release artificial pornographic images in some specific scenes,e.g.,in social networks.To efficiently identify artificial pornographic images,a novel bag-of-visual-words based approach is proposed in the work.In the bag-of-words(Bo W)framework,speeded-up robust feature(SURF)is adopted for feature extraction at first,then a visual vocabulary is constructed through K-means clustering and images are represented by an improved Bo W encoding method,and finally the visual words are fed into a learning machine for training and classification.Different from the traditional BoW method,the proposed method sets a weight on each visual word according to the number of features that each cluster contains.Moreover,a non-binary encoding method and cross-matching strategy are utilized to improve the discriminative power of the visual words.Experimental results indicate that the proposed method outperforms the traditional method.
文摘In order to solve the bottleneck problem of the traditional K-Medoids clustering algorithm facing to deal with massive data information at the time of memory capacity and processing speed of CPU, the paper proposed a parallel algorithm MapReduce programming model based on the research of K-Medoids algorithm. This algorithm increase the computation granularity and reduces the communication cost ratio based on the MapReduce model. The experimental results show that the improved parallel algorithm compared with other algorithms, speedup and operation efficiency is greatly enhanced.
基金supported by the National Natural Science Foundation of China(7147205871401048)the Fundamental Research Funds for the Central Universities(2012HGZY0009)
文摘The problem of task assignment for multiple cooperating unmanned aerial vehicle(UAV) teams is considered. Multiple UAVs forming several small teams are needed to perform attack tasks on a set of predetermined ground targets. A hierarchical task assignment method is presented to address the problem. It breaks the original problem down to three levels of sub-problems: target clustering, cluster allocation and target assignment. The first two sub-problems are centrally solved by using clustering algorithms and integer linear programming, respectively, and the third sub-problem is solved in a distributed and parallel manner, using a mixed integer linear programming model and an improved ant colony algorithm. The proposed hierarchical method can reduce the computational complexity of the task assignment problem considerably, especially when the number of tasks or the number of UAVs is large. Experimental results show that this method is feasible and more efficient than non-hierarchical methods.