Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable me...Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.展开更多
The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this pape...The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.展开更多
The authors propose a two-stage method for recognizing driving situations on the basis of driving signals for application to a safe human interface of an in-vehicle information system. In first stage, an unknown drivi...The authors propose a two-stage method for recognizing driving situations on the basis of driving signals for application to a safe human interface of an in-vehicle information system. In first stage, an unknown driving situation is determined as stopping behavior or non-stopping behavior. In second stage, a Hidden Markov Model (HMM)-based pattern recognition method is used to model and recognize six non-stopping driving situations. The authors attempt to find the optimal HMM configuration to improve the performance of driving situation recognition. Center for Integrated Acoustic Information Research (CLAIR) in-vehicle corpus is used to evaluate the HMM-based recognition method. Driving situation categories are recognized using five driving signals. The proposed method achieves a relative error reduction rate of 30.9% compared to a conventional one-stage based HMMs.展开更多
A multi-character recognition method based on hidden Markov model (HMM) was presented. The method can reduce the calculation load of correlation and improve recognition accuracy compared with singlecharacter recogni...A multi-character recognition method based on hidden Markov model (HMM) was presented. The method can reduce the calculation load of correlation and improve recognition accuracy compared with singlecharacter recognition in video. The characteristics used for recognizing include the shape character, the color character, the texture character and so on. Even our human being generally uses these characteristics to recognize objects in practice..4, recognition experiment of 17 fishes was carried out in the paper. The experimental results demonstrate the high veracity of the multi-character recognition algorithm. Together with the tracking process, it can handle dynamic objects, so the multi-character recognition is more like the human recognition, and has great application value.展开更多
We study the subspace identification for the continuous-time errors-in-variables model from sampled data.First,the filtering approach is applied to handle the time-derivative problem inherent in continuous-time identi...We study the subspace identification for the continuous-time errors-in-variables model from sampled data.First,the filtering approach is applied to handle the time-derivative problem inherent in continuous-time identification.The generalized Poisson moment functional is focused.A total least squares equation based on this filtering approach is derived.Inspired by the idea of discrete-time subspace identification based on principal component analysis,we develop two algorithms to deliver consistent estimates for the continuous-time errors-in-variables model by introducing two different instrumental variables.Order determination and other instrumental variables are discussed.The usefulness of the proposed algorithms is illustrated through numerical simulation.展开更多
基金Supported by the Guangzhou Scientific and Technological Project (2012J5100032)Nansha District Independent Innovation Project (201103003)
文摘Multi-way principal component analysis (MPCA) is the most widely utilized multivariate statistical process control method for batch processes. Previous research on MPCA has commonly agreed that it is not a suitable method for multiphase batch process analysis. In this paper, abundant phase information is revealed by way of partitioning MPCA model, and a new phase identification method based on global dynamic information is proposed. The application to injection molding shows that it is a feasible and effective method for multiphase batch process knowledge understanding, phase division and process monitoring.
基金supported in part by the National Natural Science Foundation of China under Grant No.61072061the National Science and Technology Major Projects under Grant No.2012ZX03002008the Fundamental Research Funds for the Central Universities under Grant No.2012RC0121
文摘The ability of accurate and scalable mobile device recognition is critically important for mobile network operators and ISPs to understand their customers' behaviours and enhance their user experience.In this paper,we propose a novel method for mobile device model recognition by using statistical information derived from large amounts of mobile network traffic data.Specifically,we create a Jaccardbased coefficient measure method to identify a proper keyword representing each mobile device model from massive unstructured textual HTTP access logs.To handle the large amount of traffic data generated from large mobile networks,this method is designed as a set of parallel algorithms,and is implemented through the MapReduce framework which is a distributed parallel programming model with proven low-cost and high-efficiency features.Evaluations using real data sets show that our method can accurately recognise mobile client models while meeting the scalability and producer-independency requirements of large mobile network operators.Results show that a 91.5% accuracy rate is achieved for recognising mobile client models from 2 billion records,which is dramatically higher than existing solutions.
文摘The authors propose a two-stage method for recognizing driving situations on the basis of driving signals for application to a safe human interface of an in-vehicle information system. In first stage, an unknown driving situation is determined as stopping behavior or non-stopping behavior. In second stage, a Hidden Markov Model (HMM)-based pattern recognition method is used to model and recognize six non-stopping driving situations. The authors attempt to find the optimal HMM configuration to improve the performance of driving situation recognition. Center for Integrated Acoustic Information Research (CLAIR) in-vehicle corpus is used to evaluate the HMM-based recognition method. Driving situation categories are recognized using five driving signals. The proposed method achieves a relative error reduction rate of 30.9% compared to a conventional one-stage based HMMs.
基金the National Natural Science Foundation of China (No.60675024)
文摘A multi-character recognition method based on hidden Markov model (HMM) was presented. The method can reduce the calculation load of correlation and improve recognition accuracy compared with singlecharacter recognition in video. The characteristics used for recognizing include the shape character, the color character, the texture character and so on. Even our human being generally uses these characteristics to recognize objects in practice..4, recognition experiment of 17 fishes was carried out in the paper. The experimental results demonstrate the high veracity of the multi-character recognition algorithm. Together with the tracking process, it can handle dynamic objects, so the multi-character recognition is more like the human recognition, and has great application value.
基金supported by the National Natural Science Foundation of China (Nos.60674086 and 60736021)the Scientific and Technology Plan of Zhejiang Province,China (No.2007C21173)
文摘We study the subspace identification for the continuous-time errors-in-variables model from sampled data.First,the filtering approach is applied to handle the time-derivative problem inherent in continuous-time identification.The generalized Poisson moment functional is focused.A total least squares equation based on this filtering approach is derived.Inspired by the idea of discrete-time subspace identification based on principal component analysis,we develop two algorithms to deliver consistent estimates for the continuous-time errors-in-variables model by introducing two different instrumental variables.Order determination and other instrumental variables are discussed.The usefulness of the proposed algorithms is illustrated through numerical simulation.