This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least square...This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least squares estimators of regression coefficients are derived from a second-order response surface model with errors in variables.Three performance criteria are proposed.The first is the difference between the empirical mean of maximum value of scaled prediction variance with errors and the maximum value of scaled prediction variance without errors.The second is the mean squared deviation from the mean of simulated maximum scaled prediction variance with errors.The last performance measure is the mean squared scaled prediction variance change with and without errors.In the simulations,1 000 random samples were performed following three factors with 20 experimental runs for central composite designs and 15 for Box-Behnken design.The independent variables are coded variables in these designs.Comparative results show that for the low level errors in variables,central composite face-centered design is optimal;otherwise,Box-Behnken design has a relatively better performance.展开更多
Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput...Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput. Math., 17 (2002), pp. 135-152) based on tensor product algebraic spline surfaces from fixed meshes to adaptive meshes. We start with a tensor product algebraic B-spline surface defined on an initial mesh to fit the given data based on an optimization approach. By measuring the fitting errors over each cell of the mesh, we recursively insert new knots in cells over which the errors are larger than some given threshold, and construct a new algebraic spline surface to better fit the given data locally. The algorithm terminates when the error over each cell is less than the threshold. We provide some examples to demonstrate our algorithm and compare it with Juttler's method. Examples suggest that our method is effective and is able to produce reconstruction surfaces of high quality.展开更多
This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Balt...This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Baltagi 1995) to the setting of semiparametric regressions. The authors propose a weighted profile least squares estimator (WPLSE) and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric components, respectively. It is shown that the WPLSE is asymptotically more efficient than the usual profile least squares estimator (PLSE), and that the WLPE is also asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Carroll (2000), ignoring the correlation structure entirely and "pretending" that the data are really independent will result in more efficient estimators when estimating nonparametric regression with longitudinal or panel data. The result in this paper shows that this is not true when the design points of the nonparametric component have a closeness property within groups. The asymptotic properties of the proposed weighted estimators are derived. In addition, a block bootstrap test is proposed for the goodness of fit of models, which can accommodate the correlations within groups illustrate the finite sample performances of the Some simulation studies are conducted to proposed procedures.展开更多
基金Supported by National Natural Science Foundation of China (No.70871087 and No.70931004)
文摘This paper investigates the scaled prediction variances in the errors-in-variables model and compares the performance with those in classic model of response surface designs for three factors.The ordinary least squares estimators of regression coefficients are derived from a second-order response surface model with errors in variables.Three performance criteria are proposed.The first is the difference between the empirical mean of maximum value of scaled prediction variance with errors and the maximum value of scaled prediction variance without errors.The second is the mean squared deviation from the mean of simulated maximum scaled prediction variance with errors.The last performance measure is the mean squared scaled prediction variance change with and without errors.In the simulations,1 000 random samples were performed following three factors with 20 experimental runs for central composite designs and 15 for Box-Behnken design.The independent variables are coded variables in these designs.Comparative results show that for the low level errors in variables,central composite face-centered design is optimal;otherwise,Box-Behnken design has a relatively better performance.
基金supported by the National Key Basic Research Project of China(No.2004CB318000)One Hundred Talent Project of the Chinese Academy of Sciences,the NSF of China(No.60225002,No.60533060)Doctorial Program of MOE of China and the 111 Project(No.B07033).
文摘Surface reconstruction from unorganized data points is a challenging problem in Computer Aided Design and Geometric Modeling. In this paper, we extend the mathematical model proposed by Juttler and Felis (Adv. Comput. Math., 17 (2002), pp. 135-152) based on tensor product algebraic spline surfaces from fixed meshes to adaptive meshes. We start with a tensor product algebraic B-spline surface defined on an initial mesh to fit the given data based on an optimization approach. By measuring the fitting errors over each cell of the mesh, we recursively insert new knots in cells over which the errors are larger than some given threshold, and construct a new algebraic spline surface to better fit the given data locally. The algorithm terminates when the error over each cell is less than the threshold. We provide some examples to demonstrate our algorithm and compare it with Juttler's method. Examples suggest that our method is effective and is able to produce reconstruction surfaces of high quality.
基金supported by the Leading Academic Discipline Program211 Project for Shanghai University of Finance and Economics (the 3rd phase) (No.B803)the Shanghai Leading Academic Discipline Project (No.B210)
文摘This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Baltagi 1995) to the setting of semiparametric regressions. The authors propose a weighted profile least squares estimator (WPLSE) and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric components, respectively. It is shown that the WPLSE is asymptotically more efficient than the usual profile least squares estimator (PLSE), and that the WLPE is also asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Carroll (2000), ignoring the correlation structure entirely and "pretending" that the data are really independent will result in more efficient estimators when estimating nonparametric regression with longitudinal or panel data. The result in this paper shows that this is not true when the design points of the nonparametric component have a closeness property within groups. The asymptotic properties of the proposed weighted estimators are derived. In addition, a block bootstrap test is proposed for the goodness of fit of models, which can accommodate the correlations within groups illustrate the finite sample performances of the Some simulation studies are conducted to proposed procedures.