期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于作物生长模型参数调整动态估测夏玉米生物量 被引量:7
1
作者 李卫国 顾晓鹤 +3 位作者 王尔美 陈华 葛广秀 张琤琤 《农业工程学报》 EI CAS CSCD 北大核心 2019年第7期136-142,共7页
针对如何利用作物生长模型定量解析区域夏玉米生物量动态变化的热点问题,该文在沿东海岸的江苏省盐城市大丰区设置大田夏玉米生物量估测试验,在构建夏玉米生物量过程模拟模型的基础上,对夏玉米多个生育阶段的生物量(指地上部生物量)及... 针对如何利用作物生长模型定量解析区域夏玉米生物量动态变化的热点问题,该文在沿东海岸的江苏省盐城市大丰区设置大田夏玉米生物量估测试验,在构建夏玉米生物量过程模拟模型的基础上,对夏玉米多个生育阶段的生物量(指地上部生物量)及其变化特征进行分析,并结合试验实测数据探讨利用实测叶面积指数和生物量数据调整生物量模拟模型参数的可行性。结果表明:夏玉米生物量过程模拟模型可以对夏玉米从出苗到灌浆期间的多个生育阶段生物量动态变化进行估测。出苗到拔节前的生长阶段,生物量积累主要来源于叶片形成,模拟模型可以对生物量进行有效预测,预测值与实测值之间的均方根差(root mean square error,RMSE)为18.31 kg/hm^2,相对误差为3.35%。拔节到抽雄前的生长阶段,由于茎节伸长与节数增加,生物量积累加快,预测值与实测值之间的差异较大。拔节初期生物量预测值为535.5 kg/hm^2,实测值为480 kg/hm^2,相对误差11.56%。抽雄前生物量预测值为7 036.46 kg/hm^2,实测值为5 794 kg/hm^2,相对误差21.44%。拔节到抽雄前生长阶段预测值与实测值之间的RMSE为825.94 kg/hm^2。经过模型参数调整,抽雄前生物量预测值为6 036 kg/hm^2,与实测值较为接近,RMSE为219.43 kg/hm^2,相对误差4.18%。利用参数调整后的模拟模型继续对抽雄到灌浆前生长期间生物量进行预测,预测值与实测值较为一致,灌浆期生物量预测值为11 156 kg/hm^2,实测值为10 785 kg/hm^2,相对误差3.44%,而参数调整前预测值为12 492 kg/hm^2,相对误差15.83%。在玉米拔节期进行模型参数调整,对拔节到抽雄和抽雄到灌浆2生长阶段的生物量预测效果较好。该研究可为县域夏玉米不同生长阶段生物量及其动态变化预测提供参考,可辅助县域农业管理部门进行适时生产措施调整。 展开更多
关键词 作物模型 预测 生物量 夏玉米 模型调参 沿东海岸种植区
下载PDF
基于DACO-Bi-LSTM的交通流量预测
2
作者 郭金城 潘伟民 《信息技术》 2024年第5期8-14,21,共8页
针对交通流量预测任务存在预测精度低、泛化性不足且对深度学习模型调参不全面等问题,提出了一种基于改进蚁群优化算法的双向LSTM交通流量预测模型,利用改进蚁群算法的全局寻优能力对Bi-LSTM网络的层数、神经元个数、批次大小、训练次... 针对交通流量预测任务存在预测精度低、泛化性不足且对深度学习模型调参不全面等问题,提出了一种基于改进蚁群优化算法的双向LSTM交通流量预测模型,利用改进蚁群算法的全局寻优能力对Bi-LSTM网络的层数、神经元个数、批次大小、训练次数进行优化调参。在英国高速公路和深圳政府开放平台发布的宝安区日车流量两个公开数据集上进行实验,以RMSE、MAE为评估指标,结果表明:DACO-Bi-LSTM模型具有较强的寻优能力,同时表现出更好的预测性能。 展开更多
关键词 交通流量预测 蚁群算法优化 双向长短时记忆网络 模型调参
下载PDF
Rock skeleton models and seismic porosity inversion 被引量:3
3
作者 贺锡雷 贺振华 +2 位作者 王绪本 熊晓军 蒋炼 《Applied Geophysics》 SCIE CSCD 2012年第3期349-358,363,共11页
By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite d... By substituting rock skeleton modulus expressions into Gassmann approximate fluid equation, we obtain a seismic porosity inversion equation. However, conventional rock skeleton models and their expressions are quite different from each other, resuling in different seismic porosity inversion equations, potentially leading to difficulties in correctly applying them and evaluating their results. In response to this, a uniform relation with two adjusting parameters suitable for all rock skeleton models is established from an analysis and comparison of various conventional rock skeleton models and their expressions including the Eshelby-Walsh, Pride, Geertsma, Nur, Keys-Xu, and Krief models. By giving the two adjusting parameters specific values, different rock skeleton models with specific physical characteristics can be generated. This allows us to select the most appropriate rock skeleton model based on geological and geophysical conditions, and to develop more wise seismic porosity inversion. As an example of using this method for hydrocarbon prediction and fluid identification, we apply this improved porosity inversion, associated with rock physical data and well log data, to the ZJ basin. Research shows that the existence of an abundant hydrocarbon reservoir is dependent on a moderate porosity range, which means we can use the results of seismic porosity inversion to identify oil reservoirs and dry or water-saturated reservoirs. The seismic inversion results are closely correspond to well log porosity curves in the ZJ area, indicating that the uniform relations and inversion methods proposed in this paper are reliable and effective. 展开更多
关键词 Rock physics rock skeleton models adjusting parameters seismic porosityinversion Gassmann's equation
下载PDF
一种适用于海上风机监测数据实时处理的方法研究 被引量:1
4
作者 周建华 吕鹏远 王春 《中国水利水电科学研究院学报》 北大核心 2015年第4期306-311,共6页
海上风机监测异常数据实时处理,对于风机结构体系功能与安全状态的分析评价,具有十分重要的意义。但现阶段对于异常数据实时处理方法的研究还有待完善。本文结合风机实时监测数据特点,采用具有自动调整参数功能的AR(n)模型预测算法进行... 海上风机监测异常数据实时处理,对于风机结构体系功能与安全状态的分析评价,具有十分重要的意义。但现阶段对于异常数据实时处理方法的研究还有待完善。本文结合风机实时监测数据特点,采用具有自动调整参数功能的AR(n)模型预测算法进行异常数据实时处理,对处理机制进行了分析。应用该方法对某海上风机实时采集风速及多种传感器监测数据进行了处理,讨论了该方法的精度及处理效率,验证了该方法对于处理风机异常监测数据的有效性和适用性。 展开更多
关键词 异常数据 实时处理 处理机制 AR(n)自动预测模型
下载PDF
Cluster of Strong Earthquakes and Aftershocks in Ahar-Varzeghan Area on August 11, 2012
5
作者 Ebad Ghanbari Ahmadi Mashinchi Arash Valizadeghan Arjmand Sadegh 《Journal of Civil Engineering and Architecture》 2015年第7期869-874,共6页
Seismic events are very complex spatial-temporal phenomena. Seismic catalogues, reporting information about spatial-temporal distribution of the main shocks, are nowadays available for many seismic areas in the world,... Seismic events are very complex spatial-temporal phenomena. Seismic catalogues, reporting information about spatial-temporal distribution of the main shocks, are nowadays available for many seismic areas in the world, very often major events mark the beginning of a series of earthquakes (aflershocks) whose frequency and energy are meanly decreasing in time down to the background level of activity. Azerbaijan is one of the most active segments of the Alpine-Himalayan seismic belt and marks the junction between the African-Arabian and Indian plate to the south, and Eurasian plate to the north. The cluster of earthquakes that struck near Varzeghan-Ahar was centered near the Gosha-Dagh fault, but preliminary data suggested that the fault was not responsible for the temblor. On the late afternoon of Saturday, August 11, 2012, the northwest of Iran was shaken by two of the strong earthquakes in Iranian history. First was hit by Mw (moment magnitude scale) = 6.4 Richter at local time 16:54 (12:23 GMT (Greenwich Mean Time)), and about 11 min later, an Mw = 6.3 struck 10 km to the west. The spatial-temporal clustering of micro earthquakes (aftershocks) near Varzeghan, is parameterized by means of a generalized passion model. The region has known faults but numerous smaller or deeply buried faults remain undated, according to the Geological Survey of Iran. 展开更多
关键词 Ahar-Varzeghan cluster of strong earthquakes AFTERSHOCKS strike-slip fault.
下载PDF
Parametric sensitivity analysis of precipitation and temperature based on multi-uncertainty quantification methods in the Weather Research and Forecasting model 被引量:3
6
作者 DI ZhenHua 《Science China Earth Sciences》 SCIE EI CAS CSCD 2017年第5期876-898,共23页
Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions b... Sensitivity analysis(SA) has been widely used to screen out a small number of sensitive parameters for model outputs from all adjustable parameters in weather and climate models, helping to improve model predictions by tuning the parameters. However, most parametric SA studies have focused on a single SA method and a single model output evaluation function, which makes the screened sensitive parameters less comprehensive. In addition, qualitative SA methods are often used because simulations using complex weather and climate models are time-consuming. Unlike previous SA studies, this research has systematically evaluated the sensitivity of parameters that affect precipitation and temperature simulations in the Weather Research and Forecasting(WRF) model using both qualitative and quantitative global SA methods. In the SA studies, multiple model output evaluation functions were used to conduct various SA experiments for precipitation and temperature. The results showed that five parameters(P3, P5, P7, P10, and P16) had the greatest effect on precipitation simulation results and that two parameters(P7 and P10) had the greatest effect for temperature. Using quantitative SA, the two-way interactive effect between P7 and P10 was also found to be important, especially for precipitation. The microphysics scheme had more sensitive parameters for precipitation, and P10(the multiplier for saturated soil water content) was the most sensitive parameter for both precipitation and temperature. From the ensemble simulations, preliminary results indicated that the precipitation and temperature simulation accuracies could be improved by tuning the respective sensitive parameter values, especially for simulations of moderate and heavy rain. 展开更多
关键词 Multi-uncertainty quantification methods Qualitative parameters screening Quantitative sensitivity analysis Weather Research and Forecasting model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部