为高效精确模拟航空动力系统的液态燃料横向射流多尺度雾化过程,分别采用离散相模型(discrete phase model,DPM)、流体体积(volume of fluid,VOF)法耦合DPM(VOF-DPM)对横向射流雾化过程进行数值模拟,对比2种模型对横向射流雾化过程的仿...为高效精确模拟航空动力系统的液态燃料横向射流多尺度雾化过程,分别采用离散相模型(discrete phase model,DPM)、流体体积(volume of fluid,VOF)法耦合DPM(VOF-DPM)对横向射流雾化过程进行数值模拟,对比2种模型对横向射流雾化过程的仿真结果,并研究模型转换直径与破碎模型对横向射流雾化过程仿真结果的影响。仿真结果表明:相比DPM,VOF-DPM仿真得到的射流穿透深度更接近试验结果,射流雾化过程更真实,并且能够捕捉到更详细的流场信息;当模型转换直径较小时,不能转换为离散相颗粒的液滴相对较多,这些液滴仍由VOF求解,并阻挡气流导致在其周围产生小涡团;添加破碎模型对射流穿透深度和流场结构几乎没有影响,但导致离散相颗粒继续破碎成更多更小的颗粒。展开更多
文摘为高效精确模拟航空动力系统的液态燃料横向射流多尺度雾化过程,分别采用离散相模型(discrete phase model,DPM)、流体体积(volume of fluid,VOF)法耦合DPM(VOF-DPM)对横向射流雾化过程进行数值模拟,对比2种模型对横向射流雾化过程的仿真结果,并研究模型转换直径与破碎模型对横向射流雾化过程仿真结果的影响。仿真结果表明:相比DPM,VOF-DPM仿真得到的射流穿透深度更接近试验结果,射流雾化过程更真实,并且能够捕捉到更详细的流场信息;当模型转换直径较小时,不能转换为离散相颗粒的液滴相对较多,这些液滴仍由VOF求解,并阻挡气流导致在其周围产生小涡团;添加破碎模型对射流穿透深度和流场结构几乎没有影响,但导致离散相颗粒继续破碎成更多更小的颗粒。