期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
一类模糊非线性方程组及解法
1
作者 聂普焱 范金燕 《应用数学》 CSCD 北大核心 2002年第S1期173-177,共2页
模糊非线性方程组 ,在模糊控制和现实生活中很普遍 .本文考虑一类模糊非线性方程组的性质 ,然后给出一种解法 .首先把模糊非线性方程组转变成非线性规划 ,再用非线性规划中的方法或软件来解 .
关键词 模型非线性方程组 非线性规划 模糊
全文增补中
视线跟踪系统角膜曲率中心模型优化算法及鲁棒性 被引量:2
2
作者 薛小娜 高淑萍 +1 位作者 黄柳玉 张宝玉 《工程数学学报》 CSCD 北大核心 2018年第6期635-647,共13页
为了高效获取3D视线跟踪技术中的角膜曲率中心,使系统满足实时准确及稳定性需求,本文构建了两类角膜曲率中心模型及其求解方法.首先,利用光学原理及眼球特征建立了两种求解该中心的模型,即非线性方程组模型和改进的模型.其次,针对模型... 为了高效获取3D视线跟踪技术中的角膜曲率中心,使系统满足实时准确及稳定性需求,本文构建了两类角膜曲率中心模型及其求解方法.首先,利用光学原理及眼球特征建立了两种求解该中心的模型,即非线性方程组模型和改进的模型.其次,针对模型特点构造了一种基于遗传算法与LM算法的新型混合算法(GA-LM),以快速求解所建模型.最后,多组数值实验结果表明本文所建立的模型及GA-LM算法是有效的,其能快速准确求出3D视线跟踪系统中的角膜曲率中心. 展开更多
关键词 角膜曲率中心 非线性方程组模型 优化模型 GA-LM算法 鲁棒性
下载PDF
台州市乔木林树种结构变化模拟与预测 被引量:1
3
作者 任典挺 张军 +4 位作者 金鑫 李萍 王懿祥 葛宏立 陶吉兴 《浙江农林大学学报》 CAS CSCD 北大核心 2023年第3期608-616,共9页
【目的】阐明浙江省台州市乔木林1994—2019年25 a间3个树种组(松类、杉类和阔叶类)之间的结构变化规律以及未来可能的变化趋势,为今后森林结构调控提供依据。【方法】基于6期台州市森林资源连续清查固定样地数据,建立非线性方程组自约... 【目的】阐明浙江省台州市乔木林1994—2019年25 a间3个树种组(松类、杉类和阔叶类)之间的结构变化规律以及未来可能的变化趋势,为今后森林结构调控提供依据。【方法】基于6期台州市森林资源连续清查固定样地数据,建立非线性方程组自约束树种结构模型,模拟25 a来3个树种组的株数比例和材积比例变化规律,并预测其变化趋势。【结果】①台州市松类受松材线虫Bursaphelenchus xylophilus病以及自然演替中的不利因素影响其比例持续降低,杉类的比例在1999—2004年达到最大值后缓慢下降,阔叶类比例呈现持续快速稳定增加的趋势;②经预测,松类、杉类和阔叶类各树种组林木株数占乔木林总株数的比例将分别从2019年的14.00%、24.90%和61.20%趋向于极限4.09%、7.02%和88.89%,占乔木林总材积的比例将从2019年的24.60%、29.70%和45.70%趋向于极限10.07%、11.94%和77.99%。【结论】整体上,台州市过去25 a间乔木林资源总量持续增加,树种结构“针减阔增”,朝着结构更合理的顶级植被群落方向演替。松类和杉类的比例虽然在下降,但最终会稳定在一定的比例而不会消亡。本研究提出的非线性方程组自约束树种结构模型对乔木林的株数比例和材积比例模拟具有较好的适应性,对变化趋势的预测具有较好的合理性。图2表7参26。 展开更多
关键词 森林资源连续清查 树种结构变化 非线性方程组自约束树种结构模型 预测
下载PDF
基于故障辅助因子的配电网高容错性故障区段定位方法 被引量:18
4
作者 郭壮志 陈涛 +2 位作者 洪俊杰 毛晓明 陈璟华 《电力自动化设备》 EI CSCD 北大核心 2017年第7期93-100,共8页
针对基于逻辑关系的馈线故障定位间接方法存在过分依赖群体智能优化算法的固有缺陷,采用代数关系描述,构建了基于故障辅助因子的馈线故障区段定位的非线性方程组模型,并采用具有并行特征的牛顿-拉夫逊法进行求解,其优点在于:对报警信息... 针对基于逻辑关系的馈线故障定位间接方法存在过分依赖群体智能优化算法的固有缺陷,采用代数关系描述,构建了基于故障辅助因子的馈线故障区段定位的非线性方程组模型,并采用具有并行特征的牛顿-拉夫逊法进行求解,其优点在于:对报警信息畸变的情况具有强适应性,故障定位时具有高容错性;能够对含T型耦合节点的配电网多重馈线故障区段进行准确定位;无需采用逻辑运算和最优化算法,决策效率高、算法稳定性好;单一故障下可准确定位信息畸变的位置。仿真结果验证了所提方法进行馈线故障区段定位的准确性、快速性和高容错性。 展开更多
关键词 配电网 故障区段定位 高容错性 故障辅助因子 非线性方程组模型 牛顿-拉夫逊法
下载PDF
A Linearization Approach for Rational Nonlinear Models in Mathematical Physics 被引量:1
5
作者 Robert A.Van Gorder 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第4期530-540,共11页
In this paper, a novel method for linearization of rational second order nonlinear models is discussed. In particular, we discuss an application of the 5 expansion method (created to deal with problems in Quantum Fie... In this paper, a novel method for linearization of rational second order nonlinear models is discussed. In particular, we discuss an application of the 5 expansion method (created to deal with problems in Quantum Field Theory) which will enable both the linearization and perturbation expansion of such equations. Such a method allows for one to quickly obtain the order zero perturbation theory in terms of certain special functions which are governed by linear equations. Higher order perturbation theories can then be obtained in terms of such special functions. One benefit to such a method is that it may be applied even to models without small physical parameters, as the perturbation is given in terms of the degree of nonlinearity, rather than any physical parameter. As an application, we discuss a method of linearizing the six Painlev~ equations by an application of the method. In addition to highlighting the benefits of the method, we discuss certain shortcomings of the method. 展开更多
关键词 perturbation method Painleve equations δ-expansion nonlinear differential equations
原文传递
An exponential for the solutions model of collocation method of the HIV infection CD4+T cells
6
作者 Suayip Yuzbasn 《International Journal of Biomathematics》 2016年第3期65-79,共15页
In this paper, an exponential method is presented for the approximate solutions of the HIV infection model of CD4+T. The method is based on exponential polynomi- als and collocation points. This model problem corresp... In this paper, an exponential method is presented for the approximate solutions of the HIV infection model of CD4+T. The method is based on exponential polynomi- als and collocation points. This model problem corresponds to a system of nonlinear ordinary differential equations. Matrix relations are constructed for the exponential functions. By aid of these matrix relations and the collocation points, the proposed technique transforms the model problem into a system of nonlinear algebraic equations. By solving the system of the algebraic equations, the unknown coefficients are com- puted and thus the approximate solutions are obtained. The applications of the method for the considered problem are given and the comparisons are made with the other methods. 展开更多
关键词 HIV infection model of CD4+T cells exponential approximation systems ofnonlinear differential equations exponential collocation method collocation points.
原文传递
A collocation method for numerical solutions of fractional-order logistic population model 被引量:1
7
作者 Suayip Yfizbas 《International Journal of Biomathematics》 2016年第2期235-248,共14页
In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in ... In this study, a collocation technique is presented for approximate solution of the fractional-order logistic population model. Actually, we develop the Bessel collocation method by using the fractional derivative in the Caputo sense to obtain the approximate solutions of this model problem. By means of the fractional derivative in the Caputo sense, the collocation points, the Bessel functions of the first kind, the method transforms the model problem into a system of nonlinear algebraic equations. Numerical applications are given to demonstrate efficiency and accuracy of the method. In applications, the reliability of the scheme is shown by the error function based on the accuracy of the approximate solution. 展开更多
关键词 Fractional-order logistic population model functions of first kind collocation method approximate differential equations. fractional derivative Bessel solution: nonlinear fractional
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部