In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniq...In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniques of fuzzy scheduling, model predictive control and extended state observer. Local state-space models are established on the basis of nonlinearity analysis and subspace identification. To eiJiance thedisturbance rejection capability of the controller, a extended state observer is employed to estimate unnown disturbances and model mismatches. The disturbance estimation ennaced local predictive controllers ae subsequently devised based on the local models, the performance of which is further strengthened by incorporating the fuzzy scheduling technique. The simulation results verify the merits of the proposed strategy in achieving satisfactory wide-range load tracking ad disturbance rejection performance.展开更多
Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competiti...Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect.展开更多
Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated ...Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated in three cases:1)Parameters of the MLP,the limb geometry and dynamic model match completely,2)Parameters mismatch between them,and 3)Disturbance exists.The results show that parameters mismatch is the main error source,which causes the elbow joint movement to be aberrant.From this we can infer that movement study is a process in which the internal model is updated continuously to match the geometry and dynamic model of limb.展开更多
Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a...Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.展开更多
In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering th...In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.展开更多
An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is pre...An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.展开更多
In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gau...In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.展开更多
An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong ...An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.展开更多
For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mech...For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.展开更多
Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controlle...Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.展开更多
A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identifica...A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.展开更多
Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model ...Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.展开更多
Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs ...Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.展开更多
The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi...The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.展开更多
A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temper...A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temperature. The open loop analysis revealed the nonlinear behavior of the polypropylene fluidized bed reactor, jus- tifying the use of an advanced control algorithm for efficient control of the process variables. In this case, a central- ized model predictive control (MPC) technique was implemented to control the polypropylene production rate and reactor temperature by manipulating the catalyst feed rate and cooling water flow rate respectively. The corre- sponding MPC controller was able to track changes in the setpoint smoothly for the reactor temperature and pro- duction rate while the setpoint tracking of the conventional proportional-integral (PI) controller was oscillatory with overshoots and obvious interaction between the reactor temperature and production rate loops. The MPC was able to produce controller moves which not only were well within the specified input constraints for both control vari- ables, but also non-aggressive and sufficiently smooth for practical implementations. Furthermore, the closed loop dynamic simulations indicated that the speed of rejecting the process disturbances for the MPC controller were also acceotable for both controlled variables.展开更多
This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-freque...This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-frequency motion model with three degrees of freedom was established in the context of a semi-submersible platform. Second, a model predictive controller was designed based on a model which took the constraints of the system into account. Third, simulation was carried out to demonstrate the feasibility of the controller. The results show that the model predictive controller has good performance and good at dealing with the constraints or the system.展开更多
An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the ...An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.展开更多
A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling...A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.展开更多
基金The National Natural Science Foundation of China(No.51506029,51576041)the Natural Science Foundation of Jiangsu Province(No.BK20150631)China Postdoctoral Science Foundation
文摘In order to overcome the wide-range load tracking and unknown disturbance issues of an ultra-supercritical boiler- turbine unit, a fuzzy disturbance rejection predictive control approach is proposed using the techniques of fuzzy scheduling, model predictive control and extended state observer. Local state-space models are established on the basis of nonlinearity analysis and subspace identification. To eiJiance thedisturbance rejection capability of the controller, a extended state observer is employed to estimate unnown disturbances and model mismatches. The disturbance estimation ennaced local predictive controllers ae subsequently devised based on the local models, the performance of which is further strengthened by incorporating the fuzzy scheduling technique. The simulation results verify the merits of the proposed strategy in achieving satisfactory wide-range load tracking ad disturbance rejection performance.
文摘Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect.
文摘Human brain is hypothesized to store a geometry and dynamic model of the limb.A multilayer perceptron (or MLP) network is used to stand for the model.In this paper the human elbow joint rhythmic movement is simulated in three cases:1)Parameters of the MLP,the limb geometry and dynamic model match completely,2)Parameters mismatch between them,and 3)Disturbance exists.The results show that parameters mismatch is the main error source,which causes the elbow joint movement to be aberrant.From this we can infer that movement study is a process in which the internal model is updated continuously to match the geometry and dynamic model of limb.
基金Supported by the State Key Development Program for Basic Research of China (No.2002CB312200) and the National Natural Science Foundation of China (No.60574019).
文摘Multi-kernel-based support vector machine (SVM) model structure of nonlinear systems and its specific identification method is proposed, which is composed of a SVM with linear kernel function followed in series by a SVM with spline kernel function. With the help of this model, nonlinear model predictive control can be transformed to linear model predictive control, and consequently a unified analytical solution of optimal input of multi-step-ahead predictive control is possible to derive. This algorithm does not require online iterative optimization in order to be suitable for real-time control with less calculation. The simulation results of pH neutralization process and CSTR reactor show the effectiveness and advantages of the presented algorithm.
基金Project(20180608005600843855-19)supported by the International Graduate Exchange Program of Beijing Institute of Technology,China。
文摘In order to track the desired path as fast as possible,a novel autonomous vehicle path tracking based on model predictive control(MPC)and PID speed control was proposed for high-speed automated vehicles considering the constraints of vehicle physical limits,in which a forward-backward integration scheme was introduced to generate a time-optimal speed profile subject to the tire-road friction limit.Moreover,this scheme was further extended along one moving prediction window.In the MPC controller,the prediction model was an 8-degree-of-freedom(DOF)vehicle model,while the plant was a 14-DOF vehicle model.For lateral control,a sequence of optimal wheel steering angles was generated from the MPC controller;for longitudinal control,the total wheel torque was generated from the PID speed controller embedded in the MPC framework.The proposed controller was implemented in MATLAB considering arbitrary curves of continuously varying curvature as the reference trajectory.The simulation test results show that the tracking errors are small for vehicle lateral and longitudinal positions and the tracking performances for trajectory and speed are good using the proposed controller.Additionally,the case of extended implementation in one moving prediction window requires shorter travel time than the case implemented along the entire path.
基金Project (No. 60421002) supported by the National Natural ScienceFoundation of China
文摘An extended robust model predictive control approach for input constrained discrete uncertain nonlinear systems with time-delay based on a class of uncertain T-S fuzzy models that satisfy sector bound condition is presented. In this approach, the minimization problem of the “worst-case” objective function is converted into the linear objective minimization problem in- volving linear matrix inequalities (LMIs) constraints. The state feedback control law is obtained by solving convex optimization of a set of LMIs. Sufficient condition for stability and a new upper bound on robust performance index are given for these kinds of uncertain fuzzy systems with state time-delay. Simulation results of CSTR process show that the proposed robust predictive control approach is effective and feasible.
基金Supported by the National Creative Research Groups Science Foundation of China (60421002) and National Basic Research Program of China (2007CB714000).
文摘In this article,an approach for economic performance assessment of model predictive control(MPC) system is presented.The method builds on steady-state economic optimization techniques and uses the linear quadratic Gaussian(LQG) benchmark other than conventional minimum variance control(MVC) to estimate the potential of reduction in variance.The LQG control is a more practical performance benchmark compared to MVC for performance assessment since it considers input variance and output variance,and it thus provides a desired basis for determining the theoretical maximum economic benefit potential arising from variability reduction.Combining the LQG benchmark directly with benefit potential of MPC control system,both the economic benefit and the optimal operation condition can be obtained by solving the economic optimization problem.The proposed algorithm is illustrated by simulated example as well as application to economic performance assessment of an industrial model predictive control system.
基金Supported by the National Creative Research Groups Science Foundation of China (60721062) and the National High Technology Research and Development Program of China (2007AA04Z162).
文摘An iterative learning model predictive control (ILMPC) technique is applied to a class of continuous/batch processes. Such processes are characterized by the operations of batch processes generating periodic strong disturbances to the continuous processes and traditional regulatory controllers are unable to eliminate these periodic disturbances. ILMPC integrates the feature of iterative learning control (ILC) handling repetitive signal and the flexibility of model predictive control (MPC). By on-line monitoring the operation status of batch processes, an event-driven iterative learning algorithm for batch repetitive disturbances is initiated and the soft constraints are adjusted timely as the feasible region is away from the desired operating zone. The results of an industrial application show that the proposed ILMPC method is effective for a class of continuous/batch processes.
基金Project(61673199)supported by the National Natural Science Foundation of ChinaProject(ICT1800400)supported by the Open Research Project of the State Key Laboratory of Industrial Control Technology,Zhejiang University,China
文摘For a class of linear discrete-time systems that is subject to randomly occurred networked packet loss in industrial cyber physical systems, a novel robust model predictive control method with active compensation mechanism was proposed. The probability distribution of packet loss is described as the Bernoulli distributed white sequences. By using the Lyapunov stability theory, the existing sufficient conditions of the controller are derived from solving a group of linear matrix inequalities. Moreover, dropout-rate with uncertainty and unknown dropout-rate are also considered, which can greatly reduce the conservativeness of the controller. The designed robust model predictive control method not only efficiently eliminates the negative effects of the networked data loss in industrial cyber physical systems but also ensures the stability of closed-loop system. Two examples were provided to illustrate the superiority and effectiveness of the proposed method.
基金Supported by the National Natural Science Foundation of China (61104084, 61290323)the Guangdong Education University-Industry Cooperation Projects (2010B090400410)
文摘Advanced feedback control for optimal operation of mineral grinding process is usually based on the model predictive control (MPC) dynamic optimization. Since the MPC does not handle disturbances directly by controller design, it cannot achieve satisfactory effects in controlling complex grinding processes in the presence of strong disturbances and large uncertainties. In this paper, an improved disturbance observer (DOB) based MPC advanced feedback control is proposed to control the multivariable grinding operation. The improved DOB is based on the optimal achievable H 2 performance and can deal with disturbance observation for the nonminimum-phase delay systems. In this DOB-MPC advanced feedback control, the higher-level optimizer computes the optimal operation points by maximize the profit function and passes them to the MPC level. The MPC acts as a presetting controller and is employed to generate proper pre-setpoint for the lower-level basic feedback control system. The DOB acts as a compensator and improves the operation performance by dynamically compensating the setpoints for the basic control system according to the observed various disturbances and plant uncertainties. Several simulations are performed to demonstrate the proposed control method for grinding process operation.
基金Support by China 973 Project (No. 2002CB312200).
文摘A support vector machine (SVM) with quadratic polynomial kernel function based nonlinear model one-step-ahead predictive controller is presented. The SVM based predictive model is established with black-box identification method. By solving a cubic equation in the feature space, an explicit predictive control law is obtained through the predictive control mechanism. The effect of controller is demonstrated on a recognized benchmark problem and on the control of continuous-stirred tank reactor (CSTR). Simulation results show that SVM with quadratic polynomial kernel function based predictive controller can be well applied to nonlinear systems, with good performance in following reference trajectory as well as in disturbance-rejection.
基金Supported in part by the State Key Development Program for Basic Research of China(2012CB720505)the National Natural Science Foundation of China(61174105,60874049)
文摘Based on the two-dimensional (2D) system theory, an integrated predictive iterative learning control (2D-IPILC) strategy for batch processes is presented. First, the output response and the error transition model predictions along the batch index can be calculated analytically due to the 2D Roesser model of the batch process. Then, an integrated framework of combining iterative learning control (ILC) and model predictive control (MPC) is formed reasonably. The output of feedforward ILC is estimated on the basis of the predefined process 2D model. By min- imizing a quadratic objective function, the feedback MPC is introduced to obtain better control performance for tracking problem of batch processes. Simulations on a typical batch reactor demonstrate that the satisfactory tracking performance as well as faster convergence speed can be achieved than traditional proportion type (P- t-we) ILC despite the model error and disturbances.
基金Project(2002CB312200) supported by the National Key Fundamental Research and Development Program of China project(60574019) supported by the National Natural Science Foundation of China
文摘Robustly stable multi-step-ahead model predictive control (MPC) based on parallel support vector machines (SVMs) with linear kernel was proposed. First, an analytical solution of optimal control laws of parallel SVMs based MPC was derived, and then the necessary and sufficient stability condition for MPC closed loop was given according to SVM model, and finally a method of judging the discrepancy between SVM model and the actual plant was presented, and consequently the constraint sets, which can guarantee that the stability condition is still robust for model/plant mismatch within some given bounds, were obtained by applying small-gain theorem. Simulation experiments show the proposed stability condition and robust constraint sets can provide a convenient way of adjusting controller parameters to ensure a closed-loop with larger stable margin.
基金Supported by the National Natural Science Foundation of China(60974119)
文摘The control of ultra-supercritical(USC) power unit is a difficult issue for its characteristic of the nonlinearity, large dead time and coupling of the unit. In this paper, model predictive control(MPC) based on multi-model and double layered optimization is introduced for coordinated control of USC unit. The linear programming(LP) combined with quadratic programming(QP) is used in steady optimization for computation of the ideal value of dynamic optimization. Three inputs(i.e. valve opening, coal flow and feedwater flow) are employed to control three outputs(i.e. load, main steam temperature and main steam pressure). The step response models for the dynamic matrix control(DMC) are constructed using the three inputs and the three outputs. Piecewise models are built at selected operation points. Double-layered multi-model predictive controller is implemented in simulation with satisfactory performance.
基金Supported by the Research Grants of the Research Council of Malaya
文摘A two-phase dynamic model, describing gas phase propylene polymerization in a fluidized bed reactor, was used to explore the dynamic behavior and process control of the polypropylene production rate and reactor temperature. The open loop analysis revealed the nonlinear behavior of the polypropylene fluidized bed reactor, jus- tifying the use of an advanced control algorithm for efficient control of the process variables. In this case, a central- ized model predictive control (MPC) technique was implemented to control the polypropylene production rate and reactor temperature by manipulating the catalyst feed rate and cooling water flow rate respectively. The corre- sponding MPC controller was able to track changes in the setpoint smoothly for the reactor temperature and pro- duction rate while the setpoint tracking of the conventional proportional-integral (PI) controller was oscillatory with overshoots and obvious interaction between the reactor temperature and production rate loops. The MPC was able to produce controller moves which not only were well within the specified input constraints for both control vari- ables, but also non-aggressive and sufficiently smooth for practical implementations. Furthermore, the closed loop dynamic simulations indicated that the speed of rejecting the process disturbances for the MPC controller were also acceotable for both controlled variables.
基金Supported by the Basic Research Foundation of Central University(HEUCFZ1003)
文摘This paper researches how to apply the advanced control technology of model predictive control (MPC) to the design of the dynamic positioning system (DPS) of a semi-submersible platform. First, a linear low-frequency motion model with three degrees of freedom was established in the context of a semi-submersible platform. Second, a model predictive controller was designed based on a model which took the constraints of the system into account. Third, simulation was carried out to demonstrate the feasibility of the controller. The results show that the model predictive controller has good performance and good at dealing with the constraints or the system.
基金Project(61074074)supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401)supported by the Group Innovation Fund,China
文摘An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems.The proposed synthesis algorithm contains two parts:offline design the polytopic invariant sets,and online solve the min-max optimization problem.The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set.And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law.Consequently,the terminal region is enlarged and the control effect is improved.Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.
基金the Korea Research Foundation Grant Funded by the Korean Government (MOEHRD) (KRF-2007-331-D00089) Funded by Seoul Development Institute (CS070160)
文摘A new on-line predictive monitoring and prediction model for periodic biological processes is proposed using the multiway non-Gaussian modeling. The basic idea of this approach is to use multiway non-Gaussian modeling to extract some dominant key components from daily normal operation data in a periodic process, and subsequently combining these components with predictive statistical process monitoring techniques. The proposed predictive monitoring method has been applied to fault detection and diagnosis in the biological wastewater-treatment process, which is based on strong diurnal characteristics. The results show the power and advantages of the proposed predictive monitoring of a continuous process using the multiway predictive monitoring concept, which is thus able to give very useful conceptual results for a daily monitoring process and also enables a more rapid detection of the process fault than other traditional monitoring methods.