研究具有多包不确定性和有界噪声系统的动态输出反馈鲁棒模型预测控制(Robust model predictive control,RMPC)的离线方法.先前的在线方法中,在估计状态和估计误差集合已知的情况下,在每一采样时刻通过近似最优算法求解控制器参数.本文...研究具有多包不确定性和有界噪声系统的动态输出反馈鲁棒模型预测控制(Robust model predictive control,RMPC)的离线方法.先前的在线方法中,在估计状态和估计误差集合已知的情况下,在每一采样时刻通过近似最优算法求解控制器参数.本文采用先前的方法计算离线控制器参数和吸引域.首先,选定一系列估计状态,其中,每个估计状态对应同样一组嵌套的估计误差集合.然后,针对每一估计状态和每一估计误差集合的组合,离线计算唯一的控制器参数和对应的吸引域.这些控制器参数和对应的吸引域存储在表中.如果离线确定的吸引域包含实时的扩展状态,则该离线控制器参数是实时可行的.在线时,根据实时估计状态和选取实时估计误差集合,在表中搜索包含实时扩展状态且优化性能指标最小的吸引域所对应的控制器参数.通过连续搅拌釜式反应器控制系统验证了该方法的有效性.展开更多
文摘研究具有多包不确定性和有界噪声系统的动态输出反馈鲁棒模型预测控制(Robust model predictive control,RMPC)的离线方法.先前的在线方法中,在估计状态和估计误差集合已知的情况下,在每一采样时刻通过近似最优算法求解控制器参数.本文采用先前的方法计算离线控制器参数和吸引域.首先,选定一系列估计状态,其中,每个估计状态对应同样一组嵌套的估计误差集合.然后,针对每一估计状态和每一估计误差集合的组合,离线计算唯一的控制器参数和对应的吸引域.这些控制器参数和对应的吸引域存储在表中.如果离线确定的吸引域包含实时的扩展状态,则该离线控制器参数是实时可行的.在线时,根据实时估计状态和选取实时估计误差集合,在表中搜索包含实时扩展状态且优化性能指标最小的吸引域所对应的控制器参数.通过连续搅拌釜式反应器控制系统验证了该方法的有效性.