Aimed at deficiencies in the development and implementation of Enterprise Service Architecture (ESA) software, an ESA software developing mode based on Model Driven Architecture (MDA) is put forward. This mode inc...Aimed at deficiencies in the development and implementation of Enterprise Service Architecture (ESA) software, an ESA software developing mode based on Model Driven Architecture (MDA) is put forward. This mode includes a calculation-independent model ( CIM ), a platform-independent model ( PIM ), a platform-specific model (PSM) and a code level. Based on this mode, the modeling architecture of CIM level is presented. CIM here includes a global model, a process model, an information model and an organization model. The modeling elements of global model, process recta-model, information recta-model and organization meta-model are defined in detail and the relationship between them is described. The reflecting relationship between these models is established as well.展开更多
This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of ...This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.展开更多
With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbul...With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbulence in aerodynamics,our previous work built a data-driven model applicable to subsonic airfoil flows with different free stream conditions.The results calculated by the proposed model are encouraging.In this work,we aim to model the turbulence of transonic wing flows with fully connected deep neural networks,where there is less research at present.The proposed model is driven by two flow cases of the ONERA(Office National d'Etudes et de Recherches Aerospatiales)wing and coupled with the Navier-Stokes equation solver.Four subcritical and transonic benchmark cases of different wings are used to evaluate the model performance.The iteration process is stable,and final convergence is achieved.The proposed model can be used to surrogate the traditional Reynolds averaged Navier-Stokes turbulence model.Compared with the data calculated by the Spallart-Allmaras model,the results show that the proposed model can be well generalized to the test cases.The mean relative error of the drag coefficient at different sections is below 4%for each case.This work demonstrates that modeling turbulence by data-driven methods is feasible and that our modeling pattern is effective.展开更多
基金Sponsored by the National High Technology Research & Development Program of China(Grant No.2006AA04Z165,2006AA01Z167)the National Key Technology Research & Development Program of China(Grant No.2006BAH02A09)
文摘Aimed at deficiencies in the development and implementation of Enterprise Service Architecture (ESA) software, an ESA software developing mode based on Model Driven Architecture (MDA) is put forward. This mode includes a calculation-independent model ( CIM ), a platform-independent model ( PIM ), a platform-specific model (PSM) and a code level. Based on this mode, the modeling architecture of CIM level is presented. CIM here includes a global model, a process model, an information model and an organization model. The modeling elements of global model, process recta-model, information recta-model and organization meta-model are defined in detail and the relationship between them is described. The reflecting relationship between these models is established as well.
基金Projects(51135009)supported by the National Natural Science Foundation of China
文摘This work was focused on the model-based design method of two-axis four-actuator(TAFA) fast steering mirror system(FSM), in order to improve the design efficiency. The structure and operation principle commonality of normal TAFA FSM were investigated. Based on the structure and the commonality, the conditions of single-axis idea, high-frequency resonance and coupling were modeled gradually. Combining these models, a holonomic system model was established to reflect and predict the performance of TAFA FSM. A model-based design method was proposed based on the holonomic system model. The design flow and design concept of the method were described. In accordance with the method, a TAFA FSM was designed. Simulations and experiments of the FSM were done, and the results of them were compared. The compared results indicate that the holonomic system model can well reflect and predict the performance of TAFA FSM. The bandwidth of TAFA FSM is more than 250 Hz; adjust time is less than 15 ms;overshoot is less than 8%; position accuracy is better than 10 μrad; the FSM prototype can satisfy the requirements.
基金supported by the National Natural Science Foundation of China(Grant Nos.92152301,and 91852115)the National Numerical Wind tunnel Project(Grand No.NNW2018-ZT1B01).
文摘With the rapid development of artificial intelligence techniques such as neural networks,data-driven machine learning methods are popular in improving and constructing turbulence models.For high Reynolds number turbulence in aerodynamics,our previous work built a data-driven model applicable to subsonic airfoil flows with different free stream conditions.The results calculated by the proposed model are encouraging.In this work,we aim to model the turbulence of transonic wing flows with fully connected deep neural networks,where there is less research at present.The proposed model is driven by two flow cases of the ONERA(Office National d'Etudes et de Recherches Aerospatiales)wing and coupled with the Navier-Stokes equation solver.Four subcritical and transonic benchmark cases of different wings are used to evaluate the model performance.The iteration process is stable,and final convergence is achieved.The proposed model can be used to surrogate the traditional Reynolds averaged Navier-Stokes turbulence model.Compared with the data calculated by the Spallart-Allmaras model,the results show that the proposed model can be well generalized to the test cases.The mean relative error of the drag coefficient at different sections is below 4%for each case.This work demonstrates that modeling turbulence by data-driven methods is feasible and that our modeling pattern is effective.