Based on the research of modem electronic packaging materials, thixo-forming technology was used to fabricate electronic packaging shell. The process of thixo-extrusion with SiCp/A356 composites was simulated by the f...Based on the research of modem electronic packaging materials, thixo-forming technology was used to fabricate electronic packaging shell. The process of thixo-extrusion with SiCp/A356 composites was simulated by the finite element software DEFORM-3D, then the flow velocity field, equivalent strain field and temperature field were analyzed. The electronic packaging shell was manufactured by extrusion according to the results from numerical simulation. The results show that thixo-forming technology can be used in producing electronic package shell with SiCp/A356 composites, and high volume fraction of SiCp with homogeneous distribution can be achieved, being in agreement with the requirements of electronic packaging materials.展开更多
Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume chan...Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume change in irradiated materials. Important material processes, including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution, have been taken into account in this model. The thermodynamic and kinetic properties, such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials, are expressed as a function of temperature and/or defect concentrations in a general manner. The model allows for parametric studies of critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that void swelling displays a quasi-bell shape distribution with temperature often observed in experiments.展开更多
基金Project(2007AA03Z119) supported by the National High-tech Research and Development Program of ChinaProjects(2102029,2072012) supported by the Natural Science Foundation of Beijing,China
文摘Based on the research of modem electronic packaging materials, thixo-forming technology was used to fabricate electronic packaging shell. The process of thixo-extrusion with SiCp/A356 composites was simulated by the finite element software DEFORM-3D, then the flow velocity field, equivalent strain field and temperature field were analyzed. The electronic packaging shell was manufactured by extrusion according to the results from numerical simulation. The results show that thixo-forming technology can be used in producing electronic package shell with SiCp/A356 composites, and high volume fraction of SiCp with homogeneous distribution can be achieved, being in agreement with the requirements of electronic packaging materials.
基金supported by the US Department of Energy’s Nuclear Energy Advance Modeling and Simulation (NEAMS) Program in Pacific Northwest National Laboratory, which is operated by Battelle Memorial Institute for the US Department of Energy (Grant No. DE-AC05- 76RL01830)Two of the authors (LI YuLan and GAO Fei) were partially supported by the Materials Sciences and Engineering Division, Office of Basic Energy Sciences, US Department of Energy
文摘Void swelling is an important phenomenon observed in both nuclear fuels and cladding materials in operating nuclear reactors. In this work we develop a phase-field model to simulate void evolution and void volume change in irradiated materials. Important material processes, including the generation of defects such as vacancies and self-interstitials, their diffusion and annihilation, and void nucleation and evolution, have been taken into account in this model. The thermodynamic and kinetic properties, such as chemical free energy, interfacial energy, vacancy mobility, and annihilation rate of vacancies and interstitials, are expressed as a function of temperature and/or defect concentrations in a general manner. The model allows for parametric studies of critical void nucleus size, void growth kinetics, and void volume fraction evolutions. Our simulations demonstrated that void swelling displays a quasi-bell shape distribution with temperature often observed in experiments.